871 resultados para predictive maintenance
Resumo:
The mechanism of doxorubicin-induced cardiotoxicity remains controversial. Wistar rats (n=96) were randomly assigned to a control (C), lycopene (L), doxorubicin (D), or doxorubicin+lycopene (DL) group. The L and DL groups received lycopene (5 mg/kg body wt/day by gavage) for 7 weeks. The D and DL groups received doxombicin (4 mg/kg body wt intraperitoneally) at 3, 4, 5, and 6 weeks and were killed at 7 weeks for analyses. Myocardial tissue lycopene levels and total antioxidant performance (TAP) were analyzed by HPLC and fluorometry, respectively. Lycopene metabolism was determined by incubating H-2(10)-lycopene with intestinal mucosa postmitochondrial fraction and lipoxygenase and analyzed with HPLC and APCI mass spectroscopy. Myocardial tissue lycopene levels in DL and L were similar. TAP adjusted for tissue protein were higher in myocardium of D than those of C (P=0.002). Lycopene metabolism study identified a lower oxidative cleavage of lycopene in D as compared to those of C. Our results showed that lycopene was not depleted in myocardium of lycopene-supplemented rats treated with doxorubicin and that higher antioxidant capacity in myocardium and less oxidative cleavage of lycopene in intestinal mucosa of doxorubicin-treated rats suggest an antioxidant role of doxombicin rather than acting as a prooxidant. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A complex system is often identified by the absence of a characteristic length, e.g. as in a fractal. A very large system subject to a fragmentation and/or aggregation dynamics passes through such complex configurations. We study statistically creation and maintenance of such configurations in space dimensions d = 1 to 5 and find that they are easily created (maintained) for small (large) d. An intermediate d such as d = 3 seems to be ideal for the creation and maintenance of complex systems. This has consequences in a statistical description of the universe.
Resumo:
Meat production by goats has become an important livestock enterprise in several parts of the world. Nonetheless, energy and protein requirements of meat goats have not been defined thoroughly. The objective of this study was to determine the energy and protein requirements for maintenance and growth of 34 3/4 Boer x 1/4 Saanen crossbred, intact male kids (20.5 +/- 0.24 kg of initial BW). The baseline group was 7 randomly selected kids, averaging 21.2 +/- 0.36 kg of BW. An intermediate group consisted of 6 randomly selected kids, fed for ad libitum intake, that were slaughtered when they reached an average BW of 28.2 +/- 0.39 kg. The remaining kids (n = 21) were allocated randomly on d 0 to 3 levels of DMI (treatments were ad libitum or restricted to 70 or 40% of the ad libitum intake) within 7 slaughter groups. A slaughter group contained 1 kid from each treatment, and kids were slaughtered when the ad libitum treatment kid reached 35 kg of BW. Individual body components (head plus feet, hide, internal organs plus blood, and carcass) were weighed, ground, mixed, and subsampled for chemical analyses. Initial body composition was determined using equations developed from the composition of the baseline kids. The calculated daily maintenance requirement for NE was 77.3 +/- 1.05 kcal/kg(0.75) of empty BW (EBW) or 67.4 +/- 1.04 kcal/kg(0.75) of shrunk BW. The daily ME requirement for maintenance (118.1 kcal/g(0.75) of EBW or 103.0 kcal/kg(0.75) of shrunk BW) was calculated by iteration, assuming that the heat produced was equal to the ME intake at maintenance. The partial efficiency of use of ME for NE below maintenance was 0.65. A value of 2.44 +/- 0.4 g of net protein/kg(0.75) of EBW for daily maintenance was determined. Net energy requirements for growth ranged from 2.55 to 3.0 Mcal/kg of EBW gain at 20 and 35 kg of BW, and net protein requirements for growth ranged from 178.8 to 185.2 g/kg of EBW gain. These results suggest that NE and net protein requirements for growing meat goats exceed the requirements previously published for dairy goats. Moreover, results from this study suggest that the N requirement for maintenance for growing goats is greater than the established recommendations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cost of maintenance makes up a large part of total energy costs in ruminants. Metabolizable energy (ME) requirement for maintenance (MEm) is the daily ME intake that exactly balances heat energy (HE). The net energy requirement for maintenance (NEm) is estimated subtracting MEm from the HE produced by the processing of the diet. Men cannot be directly measured experimentally and is estimated by measuring basal metabolism in fasted animals or by regression measuring the recovered energy in fed animals. MEm and NEm usually, but not always, are expressed in terms of BW0.75. However, this scaling factor is substantially empirical and its exponent is often inadequate, especially for growing animals. MEm estimated by different feeding systems (AFRC, CNCPS, CSIRO, INRA, NRC) were compared by using dairy cattle data. The comparison showed that these systems differ in the approaches used to estimate MEm and for its quantification. The CSIRO system estimated the highest MEm, mostly because it includes a correction factor to increase ME as the feeding level increases. Relative to CSIRO estimates, those of NRC, INRA, CNCPS, and AFRC were on average 0.92, 0.86, 0.84, and 0.78, respectively. MEm is affected by the previous nutritional history of the animals. This phenomenon is best predicted by dynamic models, of which several have been published in the last decades. They are based either on energy flows or on nutrient flows. Some of the different approaches used were described and discussed.