986 resultados para prediction equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.

In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.

To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.

Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.

The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.

As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scholars recently derived simple models from published data for the prediction from water temperature of hatching times for the eggs of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.). A similar model to predict eyeing time for salmon eggs was obtained and used in this study, largely by analogy, to develop equations which might be used to obtain very approximate estimates of eyeing and swim-up times for salmon and brown trout. As the models were based on data for constant temperatures and some of them also had a very inadequate data base, it was desirable that they should be tested, as far as possible, against field and hatchery observations. The present report is a brief summary based on such data as have been obtained to date. None of the data sets were ideal for the purpose and the various inadequacies are discussed later in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical studies have been made of the electrothermal waves occurring in a nonequilibrium MHD plasma. These waves are caused by an instability that occurs when a plasma having a dependence of conductivity on current density is subjected to crossed electric and magnetic fields. Theoretically, these waves were studied by developing and solving the equations of a steady, one-dimensional nonuniformity in electron density. From these nonlinear equations, predictions of the maximum amplitude and of the half width of steady waves could be obtained. Experimentally, the waves were studied in a nonequilibrium discharge produced in a potassium-seeded argon plasma at 2000°K and 1 atm. pressure. The behavior of such a discharge with four different configurations of electrodes was determined from photographs, photomultiplier measurements, and voltage probes. These four configurations were chosen to produce steady waves, to check the stability of steady waves, and to observe the manifestation of the waves in a MHD generator or accelerator configuration.

Steady, one-dimensional waves were found to exist in a number of situations, and where they existed, their characteristics agreed with the predictions of the steady theory. Some extensions of this theory were necessary, however, to describe the transient phenomena occurring in the inlet region of a discharge transverse to the gas flow. It was also found that in a discharge away from the stabilizing effect of the electrodes, steady waves became unstable for large Hall parameters. Methods of prediction of the effective electrical conductivity and Hall parameter of a plasma with nonuniformities caused by the electrothermal waves were also studied. Using these methods and the values of amplitude predicted by the steady theory, it was found that the measured decrease in transverse conductivity of a MHD device, 50 per cent at a Hall parameter of 5, could be accounted for in terms of the electrothermal instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.