970 resultados para preconditioning convection-diffusion equation matrix equation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neste artigo faz-se uma análise das características distributivas do processo Kaldor-Pasinetti, assumindo-se que o setor governamental incorre em persistentes déficits que podem ser financiados através de diferentes instrumentos, como a emissão de títulos e de moeda. Através dessa abordagem é possível estudar como a atividade governamental afeta a distribuição de renda entre capitalistas e trabalhadores e assim obter generalizações do Teorema de Cambridge em que versões anteriores como as de Steedman (1972), Pasinetti (1989), Dalziel (1991) e Faria (2000) surgem como casos particulares. _________________________________________________________________________________ ABSTRACT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that a set of fundamental solutions to the parabolic heat equation, with each element in the set corresponding to a point source located on a given surface with the number of source points being dense on this surface, constitute a linearly independent and dense set with respect to the standard inner product of square integrable functions, both on lateral- and time-boundaries. This result leads naturally to a method of numerically approximating solutions to the parabolic heat equation denoted a method of fundamental solutions (MFS). A discussion around convergence of such an approximation is included.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a system described by the linear heat equation with adiabatic boundary conditions which is perturbed periodicaly. This perturbation is nonlinear and is characterized by a one-parameter family of quadratic maps. The system, depending on the parameters, presents very complex behaviour. We introduce a symbolic framework to analyze the system and resume its most important features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract|IT Nelle lauree triennali le pubblicazioni scientifiche non vengono studiate. Per quanto possa rivelarsi un piccolo intervento, lo scopo di questa tesi è invece quello di rendere più accessibili ai pochi interessati alcune vecchie e polverose pubblicazioni. Inoltre, la presente tesi non dovrebbe essere trattata come un lavoro a se stante, ma come il primo mattone di un progetto che comprende tutte le maggiori pubblicazioni della storia. How to get an equation named after you (Part I) in particolare discute la serie di pubblicazioni del 1926 di Schrödinger "Quantisierung als Eigenwertproblem" e l’articolo del 1928 di Dirac "The Quantum Theory of the Electron", ovvero quei lavori dove le equazioni di Schrödinger e Dirac vennero per prime derivate. La serie di articoli del 1926 sommano ad un totale di oltre 100 pagine. Inizialmente Schrödinger dimostra come ciò su cui è basata la sua teoria possa spiegare correttamente fenomeni conosciuti come l’atomo di idrogeno e l’effetto Stark, per poi derivare la famosa equazione d’onda complessa del secondo ordine. I procedimenti matematici, in questi articoli, sono complicati e molte delle dimostrazioni non vengono mostrate oppure risultano inutilmente lunghe. La pubblicazione di Dirac invece ha principalmente a che fare con la derivazione dell’equazione, la sua generalizzazione e l’invarianza relativistica. Dimostra inoltre che tale equazione è compatibile con passate teorie. La lettura di Dirac è molto più sistematica, dato il largo utilizzo di dimostrazioni matematiche laddove Schrödinger avrebbe usato parole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il primo modello matematico in grado di descrivere il prototipo di un sistema eccitabile assimilabile ad un neurone fu sviluppato da R. FitzHugh e J. Nagumo nel 1961. Tale modello, per quanto schematico, rappresenta un importante punto di partenza per la ricerca nell'ambito neuroscientifico delle dinamiche neuronali, ed è infatti capostipite di una serie di lavori che hanno puntato a migliorare l’accuratezza e la predicibilità dei modelli matematici per le scienze. L’elevato grado di complessità nello studio dei neuroni e delle dinamiche inter-neuronali comporta, tuttavia, che molte delle caratteristiche e delle potenzialità dell’ambito non siano ancora state comprese appieno. In questo lavoro verrà approfondito un modello ispirato al lavoro originale di FitzHugh e Nagumo. Tale modello presenta l’introduzione di un termine di self-coupling con ritardo temporale nel sistema di equazioni differenziali, diventa dunque rappresentativo di modelli di campo medio in grado di descrivere gli stati macroscopici di un ensemble di neuroni. L'introduzione del ritardo è funzionale ad una descrizione più realistica dei sistemi neuronali, e produce una dinamica più ricca e complessa rispetto a quella presente nella versione originale del modello. Sarà mostrata l'esistenza di una soluzione a ciclo limite nel modello che comprende il termine di ritardo temporale, ove tale soluzione non può essere interpretata nell’ambito delle biforcazioni di Hopf. Allo scopo di esplorare alcune delle caratteristiche basilari della modellizzazione del neurone, verrà principalmente utilizzata l’impostazione della teoria dei sistemi dinamici, integrando dove necessario con alcune nozioni provenienti dall’ambito fisiologico. In conclusione sarà riportata una sezione di approfondimento sulla integrazione numerica delle equazioni differenziali con ritardo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física