924 resultados para precipitation and temperature


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Design teams are confronted with the quandary of choosing apposite building control systems to suit the needs of particular intelligent building projects, due to the availability of innumerable ‘intelligent’ building products and a dearth of inclusive evaluation tools. This paper is organised to develop a model for facilitating the selection evaluation for intelligent HVAC control systems for commercial intelligent buildings. To achieve these objectives, systematic research activities have been conducted to first develop, test and refine the general conceptual model using consecutive surveys; then, to convert the developed conceptual framework into a practical model; and, finally, to evaluate the effectiveness of the model by means of expert validation. The results of the surveys are that ‘total energy use’ is perceived as the top selection criterion, followed by the‘system reliability and stability’, ‘operating and maintenance costs’, and ‘control of indoor humidity and temperature’. This research not only presents a systematic and structured approach to evaluate candidate intelligent HVAC control system against the critical selection criteria (CSC), but it also suggests a benchmark for the selection of one control system candidate against another.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamics of droplets exhaled from the respiratory system during coughing or talking is addressed. A mathematical model is presented accounting for the motion of a droplet in conjunction with its evaporation. Droplet evaporation and motion are accounted for under two scenarios: 1) A well mixed droplet and 2) A droplet with inner composition variation. A multiple shells model was implemented to account for internal mass and heat transfer and for concentration and temperature gradients inside the droplet. The trajectories of the droplets are computed for a range of conditions and the spatial distribution and residence times of such droplets are evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment has been investigated numerically. The reduced equations are integrated by employing the implicit finite difference scheme or Ke1ler-box method and obtained the effect of heat due to viscous dissipation on the local skin-friction and loca1 Nusselt number at various stratification levels, for fluids having Prandtl number equals 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters and compared with the Finite Difference solutions. Effect of the heat transfer due to viscous dissipation and the temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region. A numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium is also considered for this study. Solutions are obtained using the implicit Finite Difference method and compared with the local non-similarity method. The velocity and temperature distributions for different values of stratification parameter are shown graphically. The results show many interesting aspects of complex interaction of the two buoyant mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The likely phenological responses of plants to climate warming can be measured through experimental manipulation of field sites, but results are rarely validated against year-to-year changes in climate. Here, we describe the response of 1-5 years of experimental warming on phenology (budding, flowering and seed maturation) of six common subalpine plant species in the Australian Alps using the International Tundra Experiment (ITEX) protocol.2. Phenological changes in some species (particularly the forb Craspedia jamesii) were detected in experimental plots within a year of warming, whereas changes in most other species (the forb Erigeron bellidioides, the shrub Asterolasia trymalioides and the graminoids Carex breviculmis and Poa hiemata) did not develop until after 2-4 years; thus, there appears to be a cumulative effect of warming for some species across multiple years.3. There was evidence of changes in the length of the period between flowering and seed maturity in one species (P. hiemata) that led to a similar timing of seed maturation, suggesting compensation.4. Year-to-year variation in phenology was greater than variation between warmed and control plots and could be related to differences in thawing degree days (particularly, for E. bellidioides) due to earlier timing of budding and other events under warmer conditions. However, in Carex breviculmis, there was no association between phenology and temperature changes across years.5. These findings indicate that, although phenological changes occurred earlier in response to warming in all six species, some species showed buffered rather than immediate responses.6. Synthesis. Warming in ITEX open-top chambers in the Australian Alps produced earlier budding, flowering and seed set in several alpine species. Species also altered the timing of these events, particularly budding, in response to year-to-year temperature variation. Some species responded immediately, whereas in others the cumulative effects of warming across several years were required before a response was detected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.