985 resultados para pre-filtration vertical columns
Resumo:
This paper gives an account of the wet season swamps in the River Niger valley within tbe area now submerged by the Kainji Lake. Their ecology was studied with respect to the soils, plant cover, water chemistry and plankton concentrations. Their value to the fishery in the river basin was discussed.
Resumo:
20 Gb/s QPSK transmission over 100 m of OM3 fibre using an EOM VCSEL under QPSK modulation is reported. Bit-error-ratio measurements are carried out to express the quality of the transmission scheme. © 2011 OSA.
Resumo:
A short channel vertical thin film transistor (VTFT) with 30 nm SiN x gate dielectric is reported for low voltage, high-resolution active matrix applications. The device demonstrates an ON/OFF current ratio as high as 10 9, leakage current in the fA range, and a sub-threshold slope steeper than 0.23 V/dec exhibiting a marked improvement with scaling of the gate dielectric thickness. © 2011 American Institute of Physics.
Resumo:
There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.
Resumo:
The automated detection of structural elements (e.g., columns and beams) from visual data can be used to facilitate many construction and maintenance applications. The research in this area is under initial investigation. The existing methods solely rely on color and texture information, which makes them unable to identify each structural element if these elements connect each other and are made of the same material. The paper presents a novel method of automated concrete column detection from visual data. The method overcomes the limitation by combining columns’ boundary information with their color and texture cues. It starts from recognizing long vertical lines in an image/video frame through edge detection and Hough transform. The bounding rectangle for each pair of lines is then constructed. When the rectangle resembles the shape of a column and the color and texture contained in the pair of lines are matched with one of the concrete samples in knowledge base, a concrete column surface is assumed to be located. This way, one concrete column in images/videos is detected. The method was tested using real images/videos. The results are compared with the manual detection ones to indicate the method’s validity.
Resumo:
Post-earthquake structural safety evaluations are currently performed manually by a team of certified inspectors and/or structural engineers. This process is time-consuming and costly, keeping owners and occupants from returning to their businesses and homes. Automating these evaluations would enable faster, and potentially more consistent, relief and response processes. In order to do this, the detection of exposed reinforcing steel is of utmost significance. This paper presents a novel method of detecting exposed reinforcement in concrete columns for the purpose of advancing practices of structural and safety evaluation of buildings after earthquakes. Under this method, the binary image of the reinforcing area is first isolated using a state-of-the-art adaptive thresholding technique. Next, the ribbed regions of the reinforcement are detected by way of binary template matching. Finally, vertical and horizontal profiling are applied to the processed image in order to filter out any superfluous pixels and take into consideration the size of reinforcement bars in relation to that of the structural element within which they reside. The final result is the combined binary image disclosing only the regions containing rebar overlaid on top of the original image. The method is tested on a set of images from the January 2010 earthquake in Haiti. Preliminary test results convey that most exposed reinforcement could be properly detected in images of moderately-to-severely damaged concrete columns.
Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection
Resumo:
The highly sensitive and molecule-specific technique of surface-enhanced Raman spectroscopy (SERS) generates high signal enhancements via localized optical fields on nanoscale metallic materials, which can be tuned by manipulation of the surface roughness and architecture on the submicrometer level. We investigate gold-functionalized vertically aligned carbon nanotube forests (VACNTs) as low-cost straightforward SERS nanoplatforms. We find that their SERS enhancements depend on their diameter and density, which are systematically optimized for their performance. Modeling of the VACNT-based SERS substrates confirms consistent dependence on structural parameters as observed experimentally. The created nanostructures span over large substrate areas, are readily configurable, and yield uniform and reproducible SERS enhancement factors. Further fabricated micropatterned VACNTs platforms are shown to deliver multiplexed SERS detection. The unique properties of CNTs, which can be synergistically utilized in VACNT-based substrates and patterned arrays, can thus provide new generation platforms for SERS detection. © 2012 American Chemical Society.
Resumo:
In this study, we investigated non-ideal characteristics of a diamond Schottky barrier diode with Molybdenum (Mo) Schottky metal fabricated by Microwave Plasma Chemical Vapour Deposition (MPCVD) technique. Extraction from forward bias I-V and reverse bias C- 2-V measurements yields ideality factor of 1.3, Schottky barrier height of 1.872 eV, and on-resistance of 32.63 mö·cm2. The deviation of extracted Schottky barrier height from an ideal value of 2.24 eV (considering Mo workfunction of 4.53 eV) indicates Fermi level pinning at the interface. We attributed such non-ideal behavior to the existence of thin interfacial layer and interface states between metal and diamond which forms Metal-Interfacial layer-Semiconductor (MIS) structure. Oxygen surface treatment during fabrication process might have induced them. From forward bias C-V characteristics, the minimum thickness of the interfacial layer is approximately 0.248 nm. Energy distribution profile of the interface state density is then evaluated from the forward bias I-V characteristics based on the MIS model. The interface state density is found to be uniformly distributed with values around 1013 eV - 1·cm- 2. © 2013 Elsevier B.V.