968 resultados para pk-yritys
Resumo:
What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.
Resumo:
We consider the mass generation for both charginos and neutralinos in a 3-3-1 supersymmetric model. We show that R-parity breaking interactions leave the electron and one of the neutrinos massless at the tree level. However, the same interactions induce masses for these particles at the 1-loop level. Unlike the similar situation in the minimal supersymmetric standard model, the masses of the neutralinos are related to the masses of the charginos.
Resumo:
The effect of lepton transverse polarization in B-0-->D(-)l(+)nu(l), B+-->(D) over bar (0)l(+)nu(l) decays (l=tau,mu) is analyzed within the framework of the standard model in the leading order of heavy quark effective theory. It is shown that a nonzero transverse polarization appears due to the electromagnetic final state interaction. The diagrams with intermediate D,D* mesons contributing to the nonvanishing P-T are considered. Regarding only the contribution of these mesons, the values of the tau-lepton transverse polarization averaged over the physical region in the B-0-->D(-)tau(+)nu(l) and B+-->(D) over bar (0)tau(+)nu(l) decays are equal to 2.60x10(-3) and -1.59x10(-3), respectively. In the case of muon decay modes the values of [P-T] are equal to 2.97x10(-4) and -6.79x10(-4).
Resumo:
The DELPHI Collaboration has recently reported the measurement of J/psi production in photon-photon collisions at CERN LEP II. These newly available data provide additional proof of the importance of colored c (c) over bar pairs for the production of charmonium, because these data can be explained only by considering resolved photon processes. We show here that the inclusion of color octet contributions to J/psi production in the framework of the color evaporation model is able to reproduce these data. In particular, the transverse-momentum distribution of the J/psi mesons is well described by this model.
Resumo:
We demonstrate that a CERN LHC Higgs boson search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the standard model or minimal supersymmetric standard model involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the standard model.
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
The Gross-Pitaevskii equation for a Bose-Einstein condensate confined in an elongated cigar-shaped trap is reduced to an effective system of nonlinear equations depending on only one space coordinate along the trap axis. The radial distribution of the condensate density and its radial velocity are approximated by Gaussian functions with real and imaginary exponents, respectively, with parameters depending on the axial coordinate and time. The effective one-dimensional system is applied to a description of the ground state of the condensate, to dark and bright solitons, to the sound and radial compression waves propagating in a dense condensate, and to weakly nonlinear waves in repulsive condensate. In the low-density limit our results reproduce the known formulas. In the high-density case our description of solitons goes beyond the standard approach based on the nonlinear Schrodinger equation. The dispersion relations for the sound and radial compression waves are obtained in a wide region of values of the condensate density. The Korteweg-de Vries equation for weakly nonlinear waves is derived and the existence of bright solitons on a constant background is predicted for a dense enough condensate with a repulsive interaction between the atoms.
Resumo:
Using the numerical solution of the nonlinear Schrodinger equation and a variational method, it is shown that (3+1)-dimensional spatiotemporal optical solitons, known as light bullets, can be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
We use local quark-hadron duality to calculate the nucleon structure function as seen by neutrino and muon beams. Our result indicates a possible signal of charge symmetry violation at the parton level in the very large x region.
Resumo:
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in p (p) over bar collisions at a center-of-mass energy root s=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb(-1). Azimuthal correlations are stronger at larger transverse momenta. These are well described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where contributions with low transverse momentum are significant.
Measurement of semileptonic branching fractions of B mesons to narrow D-** states - art. no. 1711803
Resumo:
Using the data accumulated in 2002-2004 with the D0 detector in proton-antiproton collisions at the Fermilab Tevatron collider with a center-of-mass energy of 1.96 TeV, the branching fractions of the decays B ->(D) over bar (0)(1)(2420)mu(+)nu(mu)X and B ->(D) over bar (*0)(2)(2460)mu(+)nu(mu)X and their ratio have been measured: B (b) over bar -> B)xB(B -> (D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))=[0.087 +/- 0.007(stat)+/- 0.014(syst)]%; B((b) over bar -> B)xB(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))=[0.035 +/- 0.007(stat)+/- 0.008(syst)]% and [B(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))]/[B(B ->(D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))]=0.39 +/- 0.09(stat)+/- 0.12(syst), where the charge conjugated states are always implied.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).
Resumo:
We present a search for associated Higgs boson production in the process p (p) over bar -> WH -> WWW*-> l(+/-)nu l('+/-)nu(')+X in final states containing two like-sign isolated electrons or muons (e(+/-)e(+/-), e(+/-)mu(+/-), or mu(+/-)mu(+/-)). The search is based on D0 run II data samples corresponding to integrated luminosities of 360-380 pb(-1). No excess is observed over the predicted standard model background. We set 95% C.L. upper limits on sigma ->(p (p) over bar WH) x Br(H -> WW*) between 3.2 and 2.8 pb for Higgs boson masses from 115 to 175 GeV.