926 resultados para photothermal signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. METHODS Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. RESULTS Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). DISCUSSION Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. CONCLUSIONS When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a comprehensive signal processing procedure for very low signal levels for the measurement of neutral deuterium in the local interstellar medium from a spacecraft in Earth orbit. The deuterium measurements were performed with the IBEX-Lo camera on NASA’s Interstellar Boundary Explorer (IBEX) satellite. Our analysis technique for these data consists of creating a mass relation in three-dimensional time of flight space to accurately determine the position of the predicted D events, to precisely model the tail of the H events in the region where the H tail events are near the expected D events, and then to separate the H tail from the observations to extract the very faint D signal. This interstellar D signal, which is expected to be a few counts per year, is extracted from a strong terrestrial background signal, consisting of sputter products from the sensor’s conversion surface. As reference we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. During the three years of the mission time when the deuterium signal was visible to IBEX, the observation geometry and orbit allowed for a total observation time of 115.3 days. Because of the spinning of the spacecraft and the stepping through eight energy channels the actual observing time of the interstellar wind was only 1.44 days. With the optimised data analysis we found three counts that could be attributed to interstellar deuterium. These results update our earlier work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a precise theoretical prediction for the signal-background interference process of gg(→ h ∗) → ZZ, which is useful to constrain the Higgs boson decay width and to measure Higgs couplings to the SM particles. The approximate NNLO K-factor is in the range of 2.05 − 2.45 (1.85 − 2.25), depending on M ZZ , at the 8 (13) TeV LHC. And the soft gluon resummation can increase the approximate NNLO result by about 10% at both the 8 TeV and 13 TeV LHC. The theoretical uncertainties including the scale, uncalculated multi-loop amplitudes of the background and PDF+αs are roughly O(10%) at NNLL′. We also confirm that the approximate K-factors in the interference and the pure signal processes are the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants activate local and systemic defence mechanisms upon exposure to stress. This innate immune response is partially regulated by plant hormones, and involves the accumulation of defensive metabolites. Although local defence reactions to herbivores are well studied, less is known about the impact of root herbivory on shoot defence. Here, we examined the effects of belowground infestation by the western corn rootworm Diabrotica virgifera virgifera on aboveground resistance in maize. Belowground herbivory by D. v. virgifera induced aboveground resistance against the generalist herbivore Spodoptera littoralis, and the necrotrophic pathogen Setosphaeria turcica. Furthermore, D. v. virgifera increased shoot levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and primed the induction of chlorogenic acid upon subsequent infestation by S. littoralis. To gain insight into the signalling network behind this below- and aboveground defence interaction, we compiled a set of 32 defence-related genes, which can be used as transcriptional marker systems to detect activities of different hormone-response pathways. Belowground attack by D. v. virgifera triggered an ABA-inducible transcription pattern in the shoot. The quantification of defence hormones showed a local increase in the production of oxylipins after root and shoot infestation by D. v. virgifera and S. littoralis, respectively. On the other hand, ABA accumulated locally and systemically upon belowground attack by D. v. virgifera. Furthermore, D. v. virgifera reduced the aboveground water content, whereas the removal of similar quantities of root biomass had no effect. Our study shows that root herbivory by D. v. virgifera specifically alters the aboveground defence status of a maize, and suggests that ABA plays a role in the signalling network mediating this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. METHODS In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. RESULTS Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). CONCLUSIONS EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. SIGNIFICANCE Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the performance of cardiorespiratory analysis detecting periodic breathing (PB) in chest wall recordings in mountaineers climbing to extreme altitude. The breathing patterns of 34 mountaineers were monitored unobtrusively by inductance plethysmography, ECG and pulse oximetry using a portable recorder during climbs at altitudes between 4497 and 7546 m on Mt. Muztagh Ata. The minute ventilation (VE) and heart rate (HR) signals were studied, to identify visually scored PB, applying time-varying spectral, coherence and entropy analysis. In 411 climbing periods, 30-120 min in duration, high values of mean power (MP(VE)) and slope (MSlope(VE)) of the modulation frequency band of VE, accurately identified PB, with an area under the ROC curve of 88 and 89%, respectively. Prolonged stay at altitude was associated with an increase in PB. During PB episodes, higher peak power of ventilatory (MP(VE)) and cardiac (MP(LF)(HR) ) oscillations and cardiorespiratory coherence (MP(LF)(Coher)), but reduced ventilation entropy (SampEn(VE)), was observed. Therefore, the characterization of cardiorespiratory dynamics by the analysis of VE and HR signals accurately identifies PB and effects of altitude acclimatization, providing promising tools for investigating physiologic effects of environmental exposures and diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants release herbivore-induced volatiles (HIPVs), which can be used as cues by plants, herbivores and natural enemies. Theory predicts that HIPVs may initially have evolved because of their direct benefits for the emitter and were subsequently adopted as infochemicals. Here, we investigated the potential direct benefits of indole, a major HIPV constituent of many plant species and a key defence priming signal in maize. We used indole-deficient maize mutants and synthetic indole at physiologically relevant doses to document the impact of the volatile on the generalist herbivore Spodoptera littoralis. Our experiments demonstrate that indole directly decreases food consumption, plant damage and survival of S. littoralis caterpillars. Surprisingly, exposure to volatile indole increased caterpillar growth. Furthermore, we show that S. littoralis caterpillars and adults consistently avoid indole-producing plants in olfactometer experiments, feeding assays and oviposition trials. Synthesis. Together, these results provide a potential evolutionary trajectory by which the release of a HIPV as a direct defence precedes its use as a cue by herbivores and an alert signal by plants. Furthermore, our experiments show that the effects of a plant secondary metabolite on weight gain and food consumption can diverge in a counterintuitive manner, which implies that larval growth can be a poor proxy for herbivore fitness and plant resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CEACAM1-L is an adhesion molecule that suppress the growth of prostate, breast, colon and endometrial tumors. In this study we defined the domain involved in CEACAM1-L tumor suppression activity. DU145 prostate cancer cells were infected with recombinant adenoviruses containing various CEACAM1-L mutant genes, and the effects of the mutant proteins on the growth of DU145 cells were assessed in a nude-mice xenograft model. We found that expression of the CEACAM1-L cytoplasm domain alone led to growth suppression of DU145 cells. These results suggest that the cytoplasmic domain of CEACAM1-L is necessary and sufficient for its growth-suppressive function. ^ The cytoplasmic domain of CEACAM1-L is presumed to be involved in a signaling pathway resulting in the suppression of tumor cell growth. It was not clear whether post-translational modification of CEACAM1-L is required for tumor suppressor function, therefore the importance of phosphorylation in growth-inhibitory signaling pathway was investigated. Full-length CEACAM1-L was found to be phosphorylated in vivo in both tyrosine and serine residues. Mutation of tyrosine 488 to phenylalanine did not abolish the tumor-suppressive activity of CEACAM1-L while mutation of serine 503 to alanine abolished the growth-inhibitory activity. In addition, mutation of serine 503 to aspartic acid produced tumor-suppressive activity similar to that of the wild-type CEACAM1-L. These results suggested that only phosphorylation at serine 503 is essential for CEACAM1-L's growth-inhibitory function in vivo. ^ Phosphorylation of CEACAM1-L may lead to its interaction with molecules in CEACAM1-L's signaling pathway. In the last part of this study we demonstrate that CEACAM1 is able to interact with the adapter protein p66Shc. p66Shc was found to be co-immunoprecipitated with full length CEACAM1-L but not with CEACAM1-L lacking its cytoplasmic tail. Additionally this interaction occurred in the absence of the tyrosine phosphorylation of CEACAM1-L. These results suggest that p66Shc is able to interact with the cytoplasmic domain of CEACAM1-L and this interaction does not require tyrosine phosphorylation. ^ In conclusion, this study suggests that CEACAM1-L signals tumor suppression through its cytoplasmic domain by initially becoming phosphorylated on serine 503. Additionally, the interaction with p66Shc may be involved in CEACAM1-L's signaling pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^