981 resultados para photochemical alteration
Resumo:
This paper presents the preliminary results of geological and geomechanical studies on the laterite stone exploited at Dano quarry in Burkina Faso. The field work described the geological structure of quarry sites and their environment to determine the rocks alteration and the links between the bedrock and lateritic material. Physic-mechanical properties have been studied for assessing the potentiality of this material for lightweight housing, to be completed with thermal and environmental considerations. Some social and economic evaluations are in progress in order to foster its utilization under local conditions. © (2014) Trans Tech Publications, Switzerland.
Resumo:
In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m-3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m-3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.
Resumo:
(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.
Resumo:
Environmental tracers continue to provide an important tool for understanding the source, flow and mixing dynamics of water resource systems through their imprint on the system or their sensitivity to alteration within it. However, 60 years or so after the first isotopic tracer studies were applied to hydrology, the use of isotopes and other environmental tracers are still not routinely necessarily applied in hydrogeological and water resources investigations where appropriate. There is therefore a continuing need to promote their use for developing sustainable management policies for the protection of water resources and the aquatic environment. This Special Issue focuses on the robustness or fitness-for-purpose of the application and use of environmental tracers in addressing problems and opportunities scientifically, to promote their wider use and to address substantive issues of vulnerability, sustainability, and uncertainty in (ground)water resources systems and their management.
Resumo:
Tephrochronology, a key tool in the correlation of Quaternary sequences, relies on the extraction of tephra shards from sediments for visual identification and high-precision geochemical comparison. A prerequisite for the reliable correlation of tephra layers is that the geochemical composition of glass shards remains unaltered by natural processes (e.g. chemical exchange in the sedimentary environment) and/or by laboratory analytical procedures. However, natural glasses, particularly when in the form of small shards with a high surface to volume ratio, are prone to chemical alteration in both acidic and basic environments. Current techniques for the extraction of distal tephra from sediments involve the ‘cleaning’ of samples in precisely such environments and at elevated temperatures. The acid phase of the ‘cleaning’ process risks alteration of the geochemical signature of the shards, while the basic phase leads to considerable sample loss through dissolution of the silica network. Here, we illustrate the degree of alteration and loss to which distal tephras may be prone, and introduce a less destructive procedure for their extraction. This method is based on stepped heavy liquid flotation and which results in samples of sufficient quality for analysis while preserving their geochemical integrity. In trials, this method out-performed chemical extraction procedures in terms of the number of shards recovered and has resulted in the detection of new tephra layers with low shard concentrations. The implications of this study are highly significant because (i) the current database of distal tephra records and their corresponding geochemical signatures may require refinement and (ii) the record of distal tephras may be incomplete due to sample loss induced by corrosive laboratory procedures. It is therefore vital that less corrosive laboratory procedures are developed to make the detection and classification of distal glass tephra more secure.
Resumo:
Identifying groundwater contributions to baseflowforms an essential part of surfacewater body characterisation. The Gortinlieve catchment (5 km2) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite/montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently formthe chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance
of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.
Resumo:
Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture.
Resumo:
One effective approach is to destroy industrial waste and pollution is the use of a semiconductor photocatalysis system. To date such, photocatalysis systems have employed conventional linear light sources. Initial results from a study of a photocatalysis system incorporating a tripled Nd:YAG laser are reported. The laser light not only played a roll as a light source for activating the photocatalyst(TiO2), but also destroyed the organic species directly via a photochemical process. The reaction intermediates and changes in their concentrations are monitored using HPLC. The relationship between the power of laser and kinetics of photoreaction are discussed.
Resumo:
Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.
Resumo:
Evidence for osseous technologies has featured in excavation reports from Southeast Asia for almost a century and from archaeological deposits as old as 43,000 years BP. However, in contrast to the significance that is placed on this technology in other parts of the world, until recently, Southeast Asian assemblages have drawn only very limited attention. Concentrating on evidence from Malaysia, the current paper examines one element of this inventory of tools: the deliberate modification of pig canines and the means by which such alteration can be distinguished from patterns of natural tooth wear. Particular attention is paid to the bearded pig (Sus barbatus), as it is one of the two species of wild boar in Malaysia whose tusks are most likely to have been used by prehistoric toolmakers. Reference is also made to wider, regional ethnographic examples of known tusk implements and their accredited uses to further assist in the identification process. Distinguishing criteria for worked tusk are formulated according to the type and extent of modification. These criteria are then applied to archaeological specimens recovered from two prehistoric cave sites in Malaysia, Gua Bintong and Niah Cave.
Resumo:
Background: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants.
Results: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements.
Conclusions: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.
Resumo:
Child undernutrition, a form of malnutrition, is a major public health burden in developing countries. Supplementation interventions targeting the major micronutrient deficiencies have only reduced the burden of child undernutrition to a certain extent, indicating that there are other underlying determinants that need addressed. Aflatoxin exposure, which is also highly prevalent in developing countries, may be considered to be an aggravating factor for child undernutrition. Increasing evidence suggests that aflatoxin exposure can occur in any stage of life including in utero through a trans-placental pathway and in early childhood (through contaminated weaning food and family food). Early life exposure to aflatoxin is associated with adverse effects on low birth weight, stunting, immune suppression and liver function damage. The mechanisms underlying impaired growth and aflatoxin exposure are still unclear but intestinal function damage, reduced immune function and alteration in the insulin-like growth factor axis caused by liver damage, are suggested hypotheses. Given the fact that both aflatoxin and child undernutrition are common in sub-Saharan Africa, effective interventions aimed at reducing undernutrition cannot be satisfactorily achieved until the interactive relationship between aflatoxin and child undernutrition is clearly understood, and an aflatoxin mitigation strategy has taken effect in those vulnerable mothers and children.
The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity
Resumo:
Although the NO removal-based air-purification ISO method ISO 22197-1:2007 is well established, its preconditioning requirements mean that only the initial activity of the photocatalyst under test is measured owing to the often-reported, gradual alteration of the surface kinetics for NO oxidation by air through the accumulation of surface HNO3. Herein, we compare the photocatalytic NO removal abilities of a number of different, common TiO2 materials, surface-saturated with photogenerated HNO3, with their behaviours observed during the typical 5 h-long ISO standard test. It is found that all the TiO2 materials studied eventually become largely NO to NO2 converters after sufficient exposure to NO under irradiation (>5 h) due to the accumulation of surface HNO3. The UV exposure time, t*, necessary to reach this HNO3 saturated condition is different for each different catalyst. As a consequence, an alternative preconditioning process for the ISO method is proposed which can be used to provide a more realistic measure of the photocatalytic activity of the underlying material and provide a measure of the NOx removing capacity of the photocatalytic material under test.
Resumo:
Elementary computing operations can be arranged within molecules so that problems in chemical, biochemical, and biological situations can be addressed. Problems that are found in small and/or living spaces, where the corresponding semiconductor logic devices cannot operate conveniently, are particularly amenable to this approach. The visualization and monitoring of intracellular species is one such category. Problems in medical diagnostics and therapy form additional categories. Chemists and biologists employ chemical synthesis and molecular biology techniques to build molecular logic devices. The photochemical approach to molecular logic devices is particularly prevalent. The fluorescent photoinduced electron transfer (PET) switching principle is particularly useful for designing logic functions into small molecules.