907 resultados para phenotype plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) is a frequent and complex neurodevelopmental disorder, characterized by impairments in social communication and repetitive behaviors and with a high male to female ratio: ~4:1. Genetic factors, including rare Copy Number Variants (CNVs), have a substantial impact in ASD risk1, and are associated with specific phenotypic manifestations2. Recent studies reported that rare inherited CNVs are enriched in mothers of ASD children compared with mothers of controls and are preferentially transmitted from mothers to ASD children suggesting a sex bias in CNV transmission; further, the imbalanced transmission of small pathogenic CNVs from unaffected mothers to their sons with ASD has been described3,4. An increased prevalence of autism-like personality traits is found in unaffected relatives of ASD children, suggesting a genetic liability of a broader autism phenotype (BAP)5. The BAP in parents of autistic children can be assessed by the Social Responsiveness Scale (SRS)6 and Broad Autism Phenotype Questionnaire (BAPQ)7 reports. The SRS is 65-item questionnaire to identify sub-clinical social impairments and interpersonal behaviour in individuals. The BAPQ is a 36-item questionnaire measures social aloofness, rigid personality, and pragmatic language deficits in both parents and children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosome microarray analysis is a powerful diagnostic tool and is being used as a first-line approach to detect chromosome imbalances associated with intellectual disability, dysmorphic features and congenital abnormalities. This test enables the identification of new copy number variants (CNVs) and their association with new microdeletion/microduplication syndromes in patients previously without diagnosis. We report the case of a 7 year-old female with moderate intellectual disability, severe speech delay and auto and hetero aggressivity with a previous 45,XX,der(13;14)mat karyotype performed at a younger age. Affymetrix CytoScan 750K chromosome microarray analysis was performed detecting a 1.77 Mb deletion at 3p26.3, encompassing 2 OMIM genes, CNTN6 and CNTN4. These genes play an important role in the formation, maintenance, and plasticity of functional neuronal networks. Deletions or mutations in CNTN4 gene have been implicated in intellectual disability and learning disabilities. Disruptions or deletions in the CNTN6 gene have been associated with development delay and other neurodevelopmental disorders. The haploinsufficiency of these genes has been suggested to participate to the typical clinical features of 3p deletion syndrome. Nevertheless inheritance from a healthy parent has been reported, suggesting incomplete penetrance and variable phenotype for this CNV. We compare our patient with other similar reported cases, adding additional value to the phenotype-genotype correlation of deletions in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD): Common neurodevelopmental disorder, global prevalence ~1 %; Persistent deficits in social communication and social interaction; restricted and repetitive behavior, interests, or activities – highly heterogeneous clinical presentation; Male to female ratio ~4:1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everyday, humans and animals navigate complex acoustic environments, where multiple sound sources overlap. Somehow, they effortlessly perform an acoustic scene analysis and extract relevant signals from background noise. Constant updating of the behavioral relevance of ambient sounds requires the representation and integration of incoming acoustical information with internal representations such as behavioral goals, expectations and memories of previous sound-meaning associations. Rapid plasticity of auditory representations may contribute to our ability to attend and focus on relevant sounds. In order to better understand how auditory representations are transformed in the brain to incorporate behavioral contextual information, we explored task-dependent plasticity in neural responses recorded at four levels of the auditory cortical processing hierarchy of ferrets: the primary auditory cortex (A1), two higher-order auditory areas (dorsal PEG and ventral-anterior PEG) and dorso-lateral frontal cortex. In one study we explored the laminar profile of rapid-task related plasticity in A1 and found that plasticity occurred at all depths, but was greatest in supragranular layers. This result suggests that rapid task-related plasticity in A1 derives primarily from intracortical modulation of neural selectivity. In two other studies we explored task-dependent plasticity in two higher-order areas of the ferret auditory cortex that may correspond to belt (secondary) and parabelt (tertiary) auditory areas. We found that representations of behaviorally-relevant sounds are progressively enhanced during performance of auditory tasks. These selective enhancement effects became progressively larger as you ascend the auditory cortical hierarchy. We also observed neuronal responses to non-auditory, task-related information (reward timing, expectations) in the parabelt area that were very similar to responses previously described in frontal cortex. These results suggests that auditory representations in the brain are transformed from the more veridical spectrotemporal information encoded in earlier auditory stages to a more abstract representation encoding sound behavioral meaning in higher-order auditory areas and dorso-lateral frontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.

Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.

In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise and physical activity are lifestyle behaviors associated with enriched mental health. Understanding the mechanisms by which exercise and physical activity improve mental health may provide insight for novel therapeutic approaches for numerous mental health disorders. This dissertation reports the findings from three studies investigating the influence of acute and chronic exercise on behavioral and mechanistic markers of hippocampal plasticity and delves into the potential role of noradrenergic signaling in the hippocampal adaptations with exercise. The first study assessed the effects of long-term voluntary wheel running on hippocampal expression of plasticity-associated genes and proteins in adult male and female C57BL/6J mice, highlighting sex differences in the adaptations to long-term voluntary wheel running. The second study examined the influence of acute exercise intensity on AMPA receptor phosphorylation, a mechanism essential for hippocampal plasticity, plasticity- associated gene expression, spatial learning and memory, and anxiety-like behavior. The unexpected finding that acute exercise increased anxiety-like behavior encouraged investigation into the role of central noradrenergic signaling in acute exercise-induced anxiety. The third study determined how previous exposure to voluntary wheel running modulates the response to an acute bout of exercise, focusing primarily on transcription of the important plasticity-promoting gene, brain-derived neurotrophic factor. Using a pharmacological approach to compromise the locus coeruleus noradrenergic system, a system that is implicated in age-related mental health disorders such as Alzheimer’s Disease, the third study also investigated the influence and interaction of the noradrenergic system and acute exercise on expression of multiple brain-derived neurotrophic factor transcripts. Together, this dissertation reports the findings from a series of experiments that explored similarities, differences, and interactions between the effects of acute and chronic exercise on markers of hippocampal plasticity and behavior. Further, this work provides insight into the role of the noradrenergic system in exercise-induced hippocampal plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016