931 resultados para phenotype plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) phenotypic modulation from the mature ’contractile’ to a less differentiated ’synthetic’ phenotype involves not only altered expression but also a reorganisation of contractile and cytoskeletal proteins. Objective: To investigate the role of RhoA, a known regulator of the actin cytoskeleton, in SMC phenotypic regulation. Methods: Rho transcription (RT-PCR), expression (Western analysis) and activation (membrane translocation or Rho ’pull-down’ assay) was investigated in cultured rabbit aortic SMC during phenotypic modulation, and under the influence of known SM-regulatory proteins (thrombin, heparin and TGF- β). Rho’s effect on cell morphology was examined by transient transfection of ’synthetic’ state SMC with either constitutively active Rho (Val14RhoA) or its inhibitor, C3 transferase. Results: RhoA transcription was elevated in the first 3 days of primary culture, and protein expression peaked at 2 days post-confluence when SMC return to a more ’contractile’ state. However, RhoA showed augmented activation at three time-points in primary culture: the transition point when SMCs enter logarithmic growth and are highly motile, upon reaching quiescence, and when they return to a more ’contractile’ state. Thrombin, heparin and TGF-β activated RhoA in ’synthetic’ state SMCs. Transfection with Val14RhoA caused a dramatic decrease in SMC size and a reorganization of cytoskeletal proteins, reminiscent of the ’contractile’ phenotype. Specific inhibition of endogenous Rho by C3 transferase resulted in an almost complete loss of contractile proteins. Conclusion: These data indicate that Rho is an important determining factor of SMC functional state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Delta, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. RESULTS: cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. CONCLUSION: Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic plasticity is the dynamic regulation of the strength of synaptic communication between nerve cells. It is central to neuronal development as well as experience-dependent remodeling of the adult nervous system as occurs during memory formation. Aberrant forms of synaptic plasticity also accompany a variety of neurological and psychiatric diseases, and unraveling the biological basis of synaptic plasticity has been a major goal in neurobiology research. The biochemical and structural mechanisms underlying different forms of synaptic plasticity are complex, involving multiple signaling cascades, reconfigurations of structural proteins and the trafficking of synaptic proteins. As such, proteomics should be a valuable tool in dissecting the molecular events underlying normal and disease-related forms of plasticity. In fact, progress in this area has been disappointingly slow. We discuss the particular challenges associated with proteomic interrogation of synaptic plasticity processes and outline ways in which we believe proteomics may advance the field over the next few years. We pay particular attention to technical advances being made in small sample proteomics and the advent of proteomic imaging in studying brain plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of NMDA receptor (NMDA-R)-mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs and their physiological roles are essentially unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by 1 h. This long-term enhancement of astrocytic glutamate release is induced by group I metabotropic glutamate receptors and is dependent on astrocytic intracellular calcium. Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca2+ channel-dependent bursts of action potentials and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, nonsynaptic plasticity in the CNS that feeds forward to generate local neuronal firing long after stimulus termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direction of synaptic plasticity at the connection between parallel fibres (PFs) and Purkinje cells can be modified by PF stimulation alone. Strong activation (Hartell, 1996) or high frequency stimulation (Schreurs and Alkon, 1993) of PFs induced a long-term depression (LTD) of PF-mediated excitatory postsynaptic currents. Brief raised frequency molecular layer stimulation produced a cAMP-dependent long-temi potentiation (LTP) of field potential (FP) responses (Salin et al., 1998). Thin slices of cerebellar vermis were prepared from 14-21 day old male Wistar rats decapitated under Halothane anaesthesia. FP's were recorded from the Purkinje cell layer in response to alternate 0.2Hz activation of stimulating electrodes placed in the molecular layer. In the presence of picrotoxin, FPs displayed two tetrodotoxin-sensitive, negative-going components termed N1 and N2. EPs were graded responses with paired pulse facilitation and were selectively blocked by 101AM 6-cyano-7-nitroquinoxaline-2,3-dicne (CNQX) an antagonist at iy,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type ionotropic glutamate receptors (AMPAR) suggesting that they were primarily PE-mediated. The effects of raised stimulus intensity (RS) and/or increased frequency (IF) activation of the molecular layer on FP responses were examined. In sagittai and transverse slices combined RS and IF molecular layer activation induced a LTD of the N2 component of FP responses. RSIF stimulation produced fewer incidences of LTD in sagittal slices when an inhibitor of nitric oxide synthase (NOS), guanylate cyclase (GC), protein kinase G (PKG) or the GABAB receptor antagonist CGP62349 was included into the perfusion medium. Application of a nitric oxide (NO) donor, a cyclic guanosine monophosphate (cGMP) analogue or a phosphodiesterase (PDE) type V inhibitor to prevent cGMP breakdown paired with IF stimulation produced an acute depression, Raised frequency (RF) molecular layer stimulation produced a slowly emerging LTD of N2 in sagittal slices that was largely blocked in the presence of NOS, cGMP or PKG inhibitors. In transverse slices RE stimulation produced a LTP of the N2 component that was prevented by an inhibitor of protein kinase A or NOS. Inhibition of cGMP-signalling frequently revealed an underlying potentiation suggesting that cGMP activity might mask the effects of cAMP. In sagittal slices RE stimulation resulted in a potentiation of FPs when the cAMP-specific PDE type IV inhibitor rolipram was incorporated into the perfusion medium. In summary, raised levels of PE stimulation can alter the synaptic efficacy at PF-Purkinje cell synapses. The results provide support for a role of NO/cGMP/PKG signalling in the induction of LTD in the cerebellar cortex and suggest that activation of GABAa receptors might also be important. The level of cyclic nucleotide-specific PDE activities may be crucial in determining the level of cGMP and CAMP activity and hence the direction of synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the strength of signalling between neurones are thought to provide a cellular substrate for learning and memory. In the cerebellar cortex, raising the frequency and the strength of parallel fibre (PF) stimulation leads to a long-term depression (LTD) of the strength of signalling at the synapse between PFs and Purkinje cells (PCs), which spreads to distant synapses to the same cell via a nitric oxide (NO) dependent mechanism. At the same synapse, but under conditions of reduced post-synaptic calcium activity, raised frequency stimulation (RFS) of PFs triggers a long-term potentiation of synaptic transmission. The aims of the work described in this thesis were to investigate the conditions necessary for LTD and LTP at this synapse following RFS and to identify the origins and second messenger cascades involved in the induction and spread of LTP and LTD. In thin, parasagittal cerebellar slices whole cell patch clamp recordings were made from PCs and the effects of RFS of one of two, independent PF inputs to the same PC were examined under a range of experimental conditions. Under conditions designed to reduce post-synaptic calcium activity, RFS to a single PF input led to LTP and a decreases in paired pulse facilitation (PPF) in both pathways. This heterosynaptic potentiation was prevented by inhibition of protein kinase A (PKA) or by inhibition of NO synthase with either 7-nitroindazole (7-NI) or NG Nitro-L-argenine methyl ester. Inhibition of guanylate cyclase (GC) or protein kinase G (PKG) had no effect. A similar potentiation was observed upon application of the adenylyl cyclase (AC) activator forskolin or the NO donor spermine NONOate. Both of these treatments also resulted in an increase in the frequency of mEPSCs, which provides further evidence for a presynaptic origin of LTP. Forskolin induced potentiation and the increase in mEPSC frequency were blocked by 7-NI. The styryl dye FM1-43, a fluorescent reporter of endo- and exocytosis, was also used to further examine the possible pre-synaptic origins of LTP. RFS or forskolin application enhanced FM1-43 de-staining and NOS inhibitors blocked this effect. Application of NONOate also enhanced FM1-43 de-staining. When post-synaptic calcium activity was less strictly buffered, RFS to a single PF input led to a transient potentiation that was succeeded by LTD in both pathways. This LTD, which resembled previously described forms, was prevented by inhibition of the NO/cGMP/PKG cascade. Modification of the AC/cAMP/PKA cascade had no effect. In summary, the direction of synaptic plasticity at the PF-PC synapse in response to RFS depends largely on the level of post-synaptic calcium activity. LTP and LTD were non-input specific and both forms of plasticity were dependent on NOS activity. Induction of LTP was mediated by a presynaptic mechanism and depended on NO and cAMP production. LTD on the other hand was a post-synaptic process and required activity of the NO/cGMP/PKG signalling cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the effect of the two most abundant FFA in plasma – palmitate and oleate – on insulin sensitivity and vascular function (monocyte phenotype and adhesion to endothelium) using in vitro cell culture models and Wistar rats. Palmitate at 300µM for 6h induced insulin resistance in THP-1 monocytes and L6 monocytes. The ceramide synthesis pathway partly accounted for the palmitate-induced insulin resistance in THP-1 monocytes but not for L6 myotubes. Oleate treatment did not induce insulin resistance in either cell type and co-incubation with oleate protected cells from palmitate-induced insulin resistance. Palmitate at 300µN for 24h significantly increased cell surface CD11b and CD36 expression in U937 monocytes. The increase in CD11b and CD36 expression was effectively inhibited by Fumonisin B1, an inhibitor of ceramide synthesis. Oleate treatment did not show any effect on CD11b and CD36 expression and co-incubation with oleate antagonised the effect of palmitate on CD11b and CD36 expression in U937 monocytes. The increase in CD11b expression did not affect U937 monocyte adhesion to ICAM-1. Treating Wistar rats with palmitate for 6h caused a transient delay in glucose disposal and an increase in adhesion of U937 monocytes to the aortic endothelium, particularly at bifurcations. In conclusion, the present study demonstrates that the saturated free fatty acid palmitate induces insulin resistance and a pro-atherogenic phenotype for monocytes, whereas the unsaturated free fatty acid oleate does not. In vivo studies also confirmed that palmitate induces insulin resistance and an increase in monocyte adhesion to aorta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why is popular understanding of female-male differences still based on rigid models of development, even though contemporary developmental sciences emphasize plasticity? Is it because the science of sex differences still works from the same rigid models?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes are increasingly implicated in a range of functions in the brain, many of which were previously ascribed to neurons. Much of the prevailing interest centers on the role of astrocytes in the modulation of synaptic transmission and their involvement in the induction of forms of plasticity such as long-term potentiation and long-term depression. However, there is also an increasing realization that astrocytes themselves can undergo plasticity. This plasticity may be manifest as changes in protein expression which may modify calcium activity within the cells, changes in morphology that affect the environment of the synapse and the extracellular space, or changes in gap junction astrocyte coupling that modify the transfer of ions and metabolites through astrocyte networks. Plasticity in the way that astrocytes release gliotransmitters can also have direct effects on synaptic activity and neuronal excitability. Astrocyte plasticity can potentially have profound effects on neuronal network activity and be recruited in pathological conditions. An emerging principle of astrocyte plasticity is that it is often induced by neuronal activity, reinforcing our emerging understanding of the working brain as a constant interaction between neurons and glial cells. © The Author(s) 2013.