994 resultados para petrology, sedimentary
Resumo:
Es descriuen les diferents menes de roques utilitzades en la construcció de la Porta Ferrada de Sant Feliu de Guíxols. Les dades litològiques obtingudes permeten localitzar de manera aproximada les pedreres d'on procedeixen els carreus que la conformen. A més, la posició de les diferents varietats de roques dins el conjunt del monument permet arribar a distingir les parts que corresponen a l'edifici original d'aquelles que s'hi han afegit posteriorment
Resumo:
Basados en la compilación de resultados de análisis sedimentológicos (granulometría, contenido orgánico) de 1191 estaciones realizadas por IMARPE, de 1975 a 2001, la compilación de información sobre el tema entre los 3°30’S y los 15°30’S y con el conocimiento de la morfología del fondo marino de esta región, se definen tres grandes áreas: al norte de los 6°15’S, de 6°15’S a 9°30’S y entre 9°30’ y 15°30’S. Entre los 3°30’ y los 6°15’S los contenidos de materia orgánica son mayores a 5% y menores a 10%, el carbono orgánico predomina con valores <1% a 2%. Los sedimentos corresponden a facies de fango y arenas, de origen terrígeno. El ancho de la plataforma es variable aproximadamente de 3 a 30 mn (14 mn promedio), la pendiente del talud superior es bastante pronunciada, presenta caídas bruscas. El relieve es disparejo, con fuertes desmembramientos en el borde exterior de la plataforma y el talud superior debido a que se encuentra surcado por cañones submarinos. En el extremo noroccidental de esta zona, se halla el Banco de Máncora cuyo fondo es rocoso e irregular. Entre los 6°30’S y los 9°30’S los contenidos de materia orgánica se incrementan de 5% a 15%, los contenidos de carbono orgánico son >2% y llegan a 5%, en algunos casos localmente superan este valor casi en tres puntos más. En los sedimentos del sector norte de esta zona predominan facies texturales de arenas y fango de origen terrígeno y también biógenos (foraminíferos), hacia el sur de esta zona predominan sedimentos de origen biogénico y autigénico (principalmente fosforita). El ancho de la plataforma se incrementa hasta alcanzar su máxima magnitud, esta es variable, aproximadamente de 22 a 70 mn. El talud superior tiene un declive moderado. El relieve del fondo marino en el borde exterior de la plataforma y talud superior se hallan surcados por cañones submarinos (7° - 9°S). Frente a Punta Chao aproximadamente a 65 mn se encuentra el Banco de Chimbote cuyo fondo es rocoso e irregular. La granulometría de los sedimentos y sus estadígrafos muestran un cambio definido desde los 10°30’S. Desde los 9°30’ a los 15°45’S los valores de materia orgánica por lo general sobrepasan el 15% y pueden alcanzar hasta 32,12%, los contenidos de carbono orgánico varían de 5% a 11,14%. En esta zona se encuentra presente, principalmente fango limoso y fango arcilloso terrígeno y biógeno (diatoméico). El ancho de la plataforma varía de modo general entre 10 y 50 mn (24 mn promedio aproximadamente). La pendiente del talud superior es suave en casi toda su extensión, el relieve del fondo marino es bastante uniforme, surcado por algunos pequeños cañones submarinos que no afectan la regularidad del relieve. De la interpretación de la data, análisis de parámetros estadísticos generados y condiciones de los sedimentos, se encontró coincidencia en la zona de la plataforma y talud superior de más de uno de los factores medio ambiente deposicional que permiten la preservación del contenido de materia orgánica tales como: Tipo y condiciones geoquímicas del sedimento y fondo marino, morfología del fondo marino, hidrodinámica, fuente de suministro, tasa de sedimentación, bioturbación.
Resumo:
P130 A HIGH-RESOLUTION 2D/3D SEISMIC STUDY OF A THRUST FAULT ZONE IN LAKE GENEVA SWITZERLAND M. SCHEIDHAUER M. BERES D. DUPUY and F. MARILLIER Institute of Geophysics University of Lausanne 1015 Lausanne, Switzerland Summary A high-resolution three-dimensional (3D) seismic reflection survey has been conducted in Lake Geneva near the city of Lausanne Switzerland where the faulted molasse basement (Tertiary sandstones) is overlain by complex Quaternary sedimentary structures. Using a single 48-channel streamer an area of 1200 m x 600 m was surveyed in 10 days. With a 5-m shot spacing and a receiver spacing of 2.5 m in the inline direction and 7.5 m in the crossline direction, a 12-fold data coverage was achieved. A maximum penetration depth of ~150 m was achieved with a 15 cu. in. water gun operated at 140 bars. The multi-channel data allow the determination of an accurate velocity field for 3D processing, and they show particularly clean images of the fault zone and the overlying sediments in horizontal and vertical sections. In order to compare different sources, inline 55 was repeated with a 30/30 and a 15/15 cu. in. double-chamber air gun (Mini GI) operated at 100 and 80 bars, respectively. A maximum penetration depth of ~450 m was achieved with this source.
Resumo:
The Gets nappe, a decollement cover nappe located at the top of the Prealps, is characterized by the occurrence of ophiolitic rocks. The metamorphic grade in the Gets nappe was determined using illite crystallinity and clay mineral assemblages. Samples from the same locality were analyzed to estimate variations in illite crystallinity values and in the parageneses of clay minerals, both in sedimentary elements of a breccia and in the embedding shaly flysch. For samples from one and the same locality, the range in illite crystallinity data between breccia elements and the shaly flysch is comparable to the variation between different shaly beds. Two S-N transects along the Gets nappe reveal the same metamorphic gradient, with the internal parts of the nappe being characterized by middle anchizonal metamorphism and the external parts showing diagenetic conditions. The metamorphic grade is higher within the Gets nappe than in its hangingwall (i.e. the Breche and Simme nappes), suggesting that the metamorphism in the Gets unit is transported. The timing and conditions of thrusting of the Gets Nappe onto the Br che and the Simme nappes is constrained by stratigraphic and metamorphic data.
Resumo:
Summary in English: The sedimentary environment of Lumparn Bight, Åland
Resumo:
Permian to Late Cretaceous allochthonous sedimentary and volcanic rocks exposed in the Batain area (eastern Oman Margin) have received comparably little attention in the past. They largely were considered as part of the Hamrat Duru Group (Hawasina Complex) of the northern Oman Mountains. Structural, kinematic and biostratigraphic results from our mapping campaign in the Batain area have now revealed, that emplacement of these units occurred in a WNW direction during latest Cretaceous/Early Paleogene time. This clearly contrasts with previous models that postulated a S-ward directed obduction in Campanian times such as recorded from the Hawasina Complex and Semail Ophiolite in the Oman Mountains. We herewith establish the `'Batain Group'' comprising all Permian to Late Cretaceous allochthonous units in the Batain Area. These are: 1.) the Permian Qarari Formation deposited in the toe of a slope setting; 2.) the Late Permian to late Liassic Al Jil Formation comprising periplatform detritus and very coarse breccias; 3.) the Scythian to Norian Matbat Formation formed by slope deposits; 4.) the Early Jurassic to early Oxfordian Guwayza Formation with high energy platform detritus; 5.) the Mid-Jurassic to earliest Cretaceous Ruwaydah Formation seamount; and 6.) the Oxfordian to Santonian Wahrah Formation, mainly radiolarites; and 7.) the Santonian to latest Maastrichtian Fayah Formation built by flysch-type sediments. These sedimentary and volcanic rocks represent deposits of the former ``Batain basin'' off eastern-Oman, destroyed by compressional tectonics at the Cretaceous/Paleogene transition. For tectono-stratigraphic reasons the Batain Group does not form part of the Hawasina Complex.
Resumo:
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800-1,000 degrees C and variable H2O contents. At water undersaturated conditions and fO(2) established around QFM, garnet has a wide stability field. At 1.2 GPa garnet ? amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents <= 9 wt% at 950 degrees C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in T-XH2O space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe-Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy
Resumo:
Chaotic deposits are frequently reported in the geological literature and are commonly interpreted as olistostromes or tectonic melanges. A chaotic complex in the Cenozoic succession of Monferrato (NW Italy) consists of interbedded mud breccia and burrowed silty clays that are pierced by sheared mud breccias and embed carbonate-cemented blocks. These may be represented by microcrystalline limestones or strongly cemented matrix-supported breccias locally containing remains of chemosymbiotic organisms (lucinid bivalves). Moreover, cylindrical concretions, up to 15 cm in diameter and 1 m long, occur in the chaotic complex and crosscut bedding planes at high angles. The cement of all these lithified portions is mainly dolomite characterized by low delta(13)C values (from -10.3 to -23parts per thousand PDB) and delta(18)O values up to + 7parts per thousand PDB. The delta(13)C values testify to precipitation of carbonates induced by microbial oxidation of methane, whereas the markedly positive delta(18)C signature, ubiquitous in the cylindrical concretions, is the evidence for the presence and destabilization of gas hydrates. The studied section provides a well-exposed example of the geological record of the birth, life, and death of a mud volcano. Unsheared, soft mud breccias represent mud flows along the flanks of the volcano, whereas sheared mud breccias are the result of the injection of unconsolidated overpressured fine-grained sediments, both taking place during ``eruptive'' phases. They were followed by more quiet stages of hemipelagic sedimentation, burrowing, and CH4 seeping. The cylindrical concretions represent the first described ancient example of the chimneys observed in present-day mud-volcano settings. They are the remnants of a cold-seep plumbing network that crosscut the mud volcano edifice. The chimneys were the pathway for the expulsion toward the sea floor of gas- and sediment-charged fluids likely originated from destabilization of methane gas hydrates. The association of mud breccias and methane-derived carbonates may not be due to mass gravity flows but can be primary and, therefore, is a diagnostic criterion for recognizing chaotic deposits due to mud volcano activity in the geological record.
Resumo:
The pre-Mesozoic metamorphic pattern of the External Massifs, composed of subunits of different metamorphic histories, resulted from the telescoping of Variscan, Ordovician and older metamorphic and structural textures and formations. During an early period, the future External Massifs were part of a peri-Gondwanian microplate evolving as an active margin. Precambrian to lower Palaeozoic igneous and sedimentary protoliths were reworked during an Ordovician subduction cycle (eclogites, granulites) preceding Ordovician anatexis and intrusion of Ordovician granitoids. Little is known about the time period when the microcontinent containing the future External Massifs followed a migration path leading to collision with Laurussia. Corresponding rock-series have not been identified. This might be because they have been eroded or transformed by migmatisation or because they remain hidden in the monocyclic areas. Besides the transformations which originated during the Ordovician subduction cycle, strong metamorphic transformations resulted from Variscan collision when many areas underwent amphibolite facies transformations and migmatisation. The different subunits composing the External Massifs and their corresponding P-T evolution are the expression of different levels in a nappe pile, which may have formed before Visean erosion and cooling. The presence of durbachitic magmatic rocks may be the expression of a large scale Early Variscan upwelling line which formed after Variscan lithospheric subduction. Late Variscan wrench fault tectonics and crustal thinning accompanied by high thermal gradients triggered several pulses of granite intrusions.
Resumo:
We present a new model to explain the origin, emplacement and stratigraphy of the Nicoya Complex in the NW part of the Nicoya Peninsula (Costa Rica) based on twenty-five years of field work, accompanied with the evolution of geochemical, vulcanological, petrological, sedimentological and paleontological paradigms. The igneous-sedimentary relation, together with radiolarian biochronology of the NW-Nicoya Peninsula is re-examined. We interpret the Nicoya Complex as a cross-section of a fragment of the Late Cretaceous Caribbean Plateau, in which the deepest levels are exposed in the NW-Nicoya Peninsula. Over 50% of the igneous rocks are intrusive (gabbros and in less proportion plagiogranites) which have a single mantle source; the remainder are basalts with a similar geochemical signature. Ar39/Ar40 radioisotopic whole rock and plagioclase ages range throughout the area from 84 to 83 Ma (Santonian) for the intrusives, and from 139 to 88 Ma (Berriasian-Turonian) for the basalts. In contrast, Mn-radiolarites that crop out in the area are older in age, Bajocian (Middle Jurassic) to Albian (middle Cretaceous). These Mn-radiolaritic blocks are set in a "matrix" of multiple gabbros and diabases intrusions. Chilled margins of magmatites, and hydrothermal baking and leaching of the radiolarites confirm the Ar39/Ar40 dating of igneous rocks being consistently younger than most of the radiolarian cherts. No Jurassic magmatic basement has been identified on the Nicoya Peninsula. We interpret the Jurassic-Cretaceous chert sediment pile to have been disrupted and detached from its original basement by multiple magmatic events that occurred during the formation of the Caribbean Plateau. Coniacian-Santonian (Late Cretaceous), Fe-rich radiolarites are largely synchronous and associated with late phases of the Plateau.
Resumo:
subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.
Resumo:
Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Qu,rigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO(2) contents (up to -90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO(2), Al(2)O(3) and Fe(2)O(3) contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to -86%) resulted from a combination of decarbonation reactions and loss of CaO and CO(2). The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.
Resumo:
El batolito de Andorra-Mont Lluís es un tipico representante de los granitos de emplazamiento epizonal de 10s Pirineos. En su parte sur-occidental està constituido principalmente por granodioritas biotíticas, granodioritas biotítico-hornbléndicas y granitos biotíticos. Desde un punto de vista geoquímico puede considerarse como una asociación plutónica alumino-cafémica, ligeramente férrica y calcoalcalina con una ligera tendencia subalcalina.