989 resultados para peripheral nerve block
Resumo:
Neurocutaneous flaps have been demonstrated to be a reliable option in different groups of patients but it remains unclear if distally-based sural flaps can be safely used in paraplegic patients because they suffer from significant nervous system alterations. The aim of this proof-of-concept study is to demonstrate that these flaps are reliable in paraplegic patients. We prospectively analysed a group (n=6) of paraplegic patients who underwent reversed sural flap surgery for ulcers on the lateral malleolus. Measurement of area and photographic documentation techniques have been employed to quantify the defect area. Sural nerve biopsies have been analysed histologically with several different staining techniques to assess the neurovascular network and the myelinisation of the nerve. The patients showed uneventful wound healing, except one case that suffered a partial flap necrosis that healed by secondary intention. Histologic analysis revealed an intact neurovascular network and myelinated nerve fibres. In this small series of paraplegic patients that underwent a distally-based sural flap, the complication rate was low, with only one case of superficial partial necrosis demonstrating the reliability and safety of the flap in this subset of patients. Histologic evaluation of sural nerve biopsies revealed an almost normal morphology. A possible explanation of this phenomenon is that the dorsal root ganglia remain intact in paraplegic patients and can preserve neural characteristics in the peripheral sensory nerve system.
Resumo:
In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.
Resumo:
Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.
Resumo:
Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.
Resumo:
We report on a patient who developed, from 5 months of age, multiple seizure types, including myoclonic, associated with severe psychomotor delay, leading to the diagnosis of Dravet syndrome. Over the years, he developed refractory epilepsy and was implanted with a vagus nerve stimulator at the age of 19. After 3 months, he experienced a progressive improvement of partial and generalized seizures, with a >90% reduction, and better alertness. This meaningful clinical improvement is discussed in the light of the sudden unexpected death in epilepsy risk, which is high in this setting, and seems remarkably diminished in our patient in view of the reduction of generalized convulsions.
Resumo:
Fifty one patients with ankylosing spondylitis (AS) were typed for HLA-A, B, C, DR, and DQ antigens. The antigen frequencies were compared with those of a normal population and with a B27 positive control group. All but one of the patients with AS were HLA-B27 positive. A positive linkage disequilibrium between Cw1, Cw2, DR1, and the B27 antigen was observed. Patients with AS showed a significant increase in DQw2 antigen compared with the B27 positive control group. No differences in antigenic frequencies were observed in patients having peripheral arthritis and patients with only axial involvement. Seven out of nine patients (78%) with an erosive peripheral arthritis were DR7 positive, suggesting that DR7 or genes closely linked could be related with a more aggressive peripheral joint involvement in patients with AS.
Resumo:
Left recurrent laryngeal nerve palsy usually results from invasion or compression of the nerve caused by diseases localized within the aortopulmonary window. This study reports the case of a 76-yr-old male with vocal cord paralysis due to lymph node involvement by silicosis. This rare entity was identified by video-mediastinoscopy, which revealed a granulomatous and fibrosed recurrent lymph node encasing the nerve. The nerve was dissected and released from scar tissues. Progressive clinical improvement was observed followed by total and durable recovery of the voice after 15 weeks follow-up.
Resumo:
Murine T cell reactivity with products of the minor lymphocyte stimulatory (Mls) locus correlates with the expression of particular variable (V) domains of the T cell receptor (TCR) beta chain. It was recently demonstrated that Mls antigens are encoded by an open reading frame (ORF) in the 3' long terminal repeat of either endogenous or exogenous mouse mammary tumor virus (MMTV). Immature thymocytes expressing reactive TCR-V beta domains are clonally deleted upon exposure to endogenous Mtv's. Mature T cells proliferate vigorously in response to Mls-1a (Mtv-7) in vivo, but induction of specific anergy and deletion after exposure to Mtv-7-expressing cells in the periphery has also been described. We show here that B cells and CD8+ (but not CD4+) T cells from Mtv-7+ mice efficiently induce peripheral deletion of reactive T cells upon transfer to Mtv-7- recipients, whereas only B cells stimulate specific T cell proliferation in vivo. In contrast to endogenous Mtv-7, transfer of B, CD4+, or CD8+ lymphocyte subsets from mice maternally infected with MMTV(SW), an infectious homologue of Mtv-7, results in specific T cell deletion in the absence of a detectable proliferative response. Finally, we show by secondary transfers of infected cells that exogenous MMTV(SW) is transmitted multidirectionally between lymphocyte subsets and ultimately to the mammary gland. Collectively our data demonstrate heterogeneity in the expression and/or presentation of endogenous and exogenous MMTV ORF by lymphocyte subsets and emphasize the low threshold required for induction of peripheral T cell deletion by these gene products.
Resumo:
Based on neuroimaging data showing absence of the trochlear nerve, congenital superior oblique palsy is now classified as a congenital cranial dysinnervation disorder. A similar absence of the abducens nerve is accompanied by misinnervation to the lateral rectus muscle from a branch of oculomotor nerve in the Duane retraction syndrome. This similarity raises the question of whether some cases of Brown syndrome could arise from a similar synkinesis between the inferior and superior oblique muscles in the setting of congenital superior oblique palsy. This hypothesis has gained support from the confluence of evidence from a number of independent studies. Using Duane syndrome as a model, we critically review the accumulating evidence that some cases of Brown syndrome are ultimately attributable to dysgenesis of the trochlear nerve.
Resumo:
Audit report on the Community Development Block Grants program for the City of Brooklyn, Iowa for the year ended June 30, 2012
Resumo:
Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.
Resumo:
Intracranial hypertension is an emergency suspected from clinical symptoms, imaging data and ophthalomologic signs. Intracranial hypertension is confirmed by invasive intracranial monitoring, which is the gold standard technique to measure intracranial pressure (ICP). Because of complications, hemorrhage or infection, non-invasive methods have been developed such as neuroimaging, transcranial Doppler sonography and optic nerve sheath diameter (ONSD) ultrasonography. We have reviewed ONSD technique that detects intracranial hypertension related volume variations of subarachnoid space along the retro bulbar segment of the optic nerve. Technique, indications and prospects are discussed.
Resumo:
Key factors that provide context for the state's Maternal and Child Health (MCH) annual report and state plan are highlighted in this overview. This section briefly outlines Iowa's demographics, population changes, economic indicators and significant public initiatives. Major strategic planning efforts affecting development of program activities are also identified.