995 resultados para paternal age
Resumo:
We examined the ability of pyridoxamine (PM), an inhibitor of formation of advanced glycation end products (AGEs) and lipoxidation end products (ALEs), to protect against diabetes-induced retinal vascular lesions. The effects of PM were compared with the antioxidants vitamin E (VE) and R-alpha-lipoic acid (LA) in streptozotocin-induced diabetic rats. Animals were given either PM (1 g/l drinking water), VE (2,000 IU/kg diet), or LA (0.05%/kg diet). After 29 weeks of diabetes, retinas were examined for pathogenic changes, alterations in extracellular matrix (ECM) gene expression, and accumulation of the immunoreactive AGE/ALE N-epsilon-(carboxymethyl)lysine (CML). Acellular capillaries were increased more than threefold, accompanied by significant upregulation of laminin immunoreactivity in the retinal microvasculature. Diabetes also increased mRNA expression for fibronectin (2-fold), collagen IV (1.6-fold), and laminin beta chain (2.6-fold) in untreated diabetic rats compared with nondiabetic rats. PM treatment protected against capillary drop-out and limited laminin protein upregulation and ECM mRNA expression and the increase in CML in the retinal vasculature. VE and LA failed to protect against retinal capillary closure and had inconsistent effects on diabetes-related upregulation of ECM mRNAs. These results indicate that the AGE/ALE inhibitor PM protected against a range of pathological changes in the diabetic retina and may be useful for treating diabetic retinopathy.
Resumo:
The formation of advanced glycation end products (AGEs) is a key pathophysiological event with links to a range of important human diseases. It is now clear that AGEs may act as mediators, not only of diabetic complications(1 2) but also of widespread age related pathology such as Alzheimer's disease,(3) decreased skin elasticity,(4) (5) male erectile dysfunction,(6) (7) pulmonary fibrosis,(8) and atherosclerosis.(9 10) Since many cells and tissues of the eye are profoundly influenced by both diabetes and ageing, it is fitting that advanced glycation is now receiving considerable attention as a possible modulator in important visual disorders. An increasing number of reports confirm widespread AGE accumulation at sites of known ocular pathology and demonstrate how these products mediate crosslinking of long lived molecules in the eye. Such studies also underscore the putative pathophysiological role of advanced glycation in ocular cell dysfunction in vitro and in vivo.
Resumo:
Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) are implicated in the pathogenesis of atherosclerotic vascular disease of diabetic and nondiabetic etiology. Recent research suggests that advanced glycation of ApoB contributes to the development of hyperlipidemia. AGE-specific receptors, expressed on vascular endothelium and mononuclear cells, may be involved in both the clearance of, and the inflammatory responses to AGEs. The aim of this study was to examine whether there is a relationship between serum AGE-ApoB and AGEs in arterial tissue of older normolipidemic nondiabetic patients with occlusive atherosclerotic disease, compared with age-matched and younger asymptomatic persons.
MATERIALS AND METHODS: Serum AGE-ApoB was measured by ELISA in 21 cardiac bypass patients. Furthermore, an AGE-specific monoclonal antibody, and polyclonal antibodies against anti-AGE-receptor (anti-AGE-R) 1 and 2 were used to explore the localization and distribution of AGEs and AGE-R immunoreactivity (IR) in arterial segments excised from these patients.
RESULTS: Serum AGE-ApoB levels were significantly elevated in the asymptomatic, older population, compared with those in young healthy persons (259 +/- 24 versus 180 +/- 21 AGE U/mg of ApoB, p < 0.01). Higher AGE-ApoB levels were observed in those patients with atherosclerosis (329 +/- 23 versus 259 +/- 24 AGE U/mg ApoB, p < 0.05). Comparisons of tissue AGE-collagen with serum AGE-ApoB levels showed a significant correlation (r = 0.707, p < 0.01). In early lesions, AGE-IR occurred mostly extracellularly. In fatty streaks and dense, cellular atheromatous lesions, AGE-IR was visible within lipid-containing smooth muscle cells and macrophages, while in late-stage, acellular plaques, AGE-IR occurred mostly extracellularly. AGE-R1 and -R2 were observed on vascular endothelial and smooth-muscle cells and on infiltrating mononuclear cells in the early-stage lesions, whereas in dense, late-stage plaques, they colocalized mostly with lipid-laden macrophages. On tissue sections, scoring of AGE-immunofluorescence correlated with tissue AGE and plasma AGE-ApoB.
CONCLUSIONS: (1) The correlation between arterial tissue AGEs and circulating AGE-ApoB suggests a causal link between AGE modification of lipoproteins and atherosclerosis. AGE-specific receptors may contribute to this process. (2) Serum AGE-ApoB may serve to predict atherosclerosis in asymptomatic patients.
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. Past studies have shown that the size of expanded CAG repeat is inversely associated with age at onset (AO) of HD. It is not known whether the normal Huntington allele size influences the relation between the expanded repeat and AO of HD. Data collected from two independent cohorts were used to test the hypothesis that the unexpanded CAG repeat interacts with the expanded CAG repeat to influence AO of HD. In the New England Huntington Disease Center Without Walls (NEHD) cohort of 221 HD affected persons and in the HD-MAPS cohort of 533 HD affected persons, we found evidence supporting an interaction between the expanded and unexpanded CAG repeat sizes which influences AO of HD (P = 0.08 and 0.07, respectively). The association was statistically significant when both cohorts were combined (P=0.012). The estimated heritability of the AO residual was 0.56 after adjustment for normal and expanded repeats and their interaction. An analysis of tertiles of repeats sizes revealed that the effect of the normal allele is seen among persons with large HD repeat sizes (47-83). These findings suggest that an increase in the size of the normal repeat may mitigate the expression of the disease among HD affected persons with large expanded CAG repeats. (C) 2003 Wiley-Liss, Inc.
Resumo:
Multidisciplinary investigations of the infills of steeply-incised buried channels on the coast of Essex, England, provide important insights into late Middle Pleistocene climate and sea-level change and have a direct bearing on the differentiation of MIS 11 and MIS 9 in terrestrial records. New data are presented from Rochford and Burnham-on-Crouch where remnants of two substantial palaeo-channels filled with interglacial sediment can be directly related to the terrace stratigraphy of the Thames. The sediments in both channels accumulated in an estuarine environment early in an interglacial when mixed oak forest was becoming established. Lithological evidence suggests that the interglacial beds post-date the brackish-water infill of an older palaeo-channel ascribed to the Hoxnian and correlated with part of MIS 11, and pre-date terrace gravels (Barling Gravel) ascribed to MIS 8. An MIS 9 attribution is supported by molluscan biostratigraphy, palaeo-salinity and amino-acid racemization data. The relative sea-level record in this area thus includes evidence for two major marine transgressions during MIS 11 and MIS 9, with local maxima of >10 m O.D. Both are associated with sediments that show ‘Hoxnian’ palynological affinities. The wider significance of these findings, and of an intermediate phase of pronounced fluvial incision during MIS 10, is discussed.
Resumo:
Background: Age-related macular degeneration (AMD) is the leading cause of blindness in Western countries. Numerous risk factors have been reported but the evidence and strength of association is variable. We aimed to identify those risk factors with strong levels of evidence which could be easily assessed by physicians or ophthalmologists to implement preventive interventions or address current behaviours.
Resumo:
Variation in the apolipoprotein E gene (APOE) has been reported to be associated with longevity in humans. The authors assessed the allelic distribution of APOE isoforms e2, e3, and e4 among 10,623 participants from 15 case-control and cohort studies of age-related macular degeneration (AMD) in populations of European ancestry (study dates ranged from 1990 to 2009). The authors included only the 10,623 control subjects from these studies who were classified as having no evidence of AMD, since variation within the APOE gene has previously been associated with AMD. In an analysis stratified by study center, gender, and smoking status, there was a decreasing frequency of the APOE e4 isoform with increasing age (?2 for trend = 14.9 (1 df); P = 0.0001), with a concomitant increase in the e3 isoform (?2 for trend = 11.3 (1 df); P = 0.001). The association with age was strongest in e4 homozygotes; the frequency of e4 homozygosity decreased from 2.7% for participants aged 60 years or less to 0.8% for those over age 85 years, while the proportion of participants with the e3/e4 genotype decreased from 26.8% to 17.5% across the same age range. Gender had no significant effect on the isoform frequencies. This study provides strong support for an association of the APOE gene with human longevity.