993 resultados para pacs: mathematical techniques
Resumo:
The objective of the present study was to establish a method for quantitative analysis of von Willebrand factor (vWF) multimeric composition using a mathematical framework based on curve fitting. Plasma vWF multimers from 15 healthy subjects and 13 patients with advanced pulmonary vascular disease were analyzed by Western immunoblotting followed by luminography. Quantitative analysis of luminographs was carried out by calculating the relative densities of low, intermediate and high molecular weight fractions using laser densitometry. For each densitometric peak (representing a given fraction of vWF multimers) a mean area value was obtained using data from all group subjects (patients and normal individuals) and plotted against the distance between the peak and IgM (950 kDa). Curves were constructed for each group using nonlinear fitting. Results indicated that highly accurate curves could be obtained for healthy controls and patients, with respective coefficients of determination (r²) of 0.9898 and 0.9778. Differences were observed between patients and normal subjects regarding curve shape, coefficients and the region of highest protein concentration. We conclude that the method provides accurate quantitative information on the composition of vWF multimers and may be useful for comparisons between groups and possibly treatments.
Resumo:
Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.
Resumo:
This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.
Resumo:
The purpose of the present study was to compare the sensitivity and specificity of V3 enzyme immunoassay (solid phase EIA and EIA inhibition) and restriction fragment length polymorphism (RFLP) with the DNA sequencing "gold standard" to identify the Brazilian HIV-1 variants of subtype B and B"-GWGR. Peripheral blood mononuclear cells were collected from 61 HIV-1-infected individuals attending a clinic in São Paulo. Proviral DNA was amplified and sequentially cleaved with the Fok I restriction enzyme. Plasma samples were submitted to a V3-loop biotinylated synthetic peptide EIA. Direct partial DNA sequencing of the env gene was performed on all samples. Based on EIA results, the sensitivity for detecting B-GPGR was 70%, compared to 64% for the Brazilian variant B"-GWGR while, the specificity of B-GPGR detection was 85%, compared to 88% for GWGR. The assessment of RFLP revealed 68% sensitivity and 94% specificity for the B-GPGR strain compared to 84 and 90% for the B"-GWGR variant. Moreover, direct DNA sequencing was able to detect different base sequences corresponding to amino acid sequences at the tip of the V3 loop in 22 patients. These results show a similar performance of V3 serology and RLFP in identifying the Brazilian variant GWGR. However, V3 peptide serology may give indeterminate results. Therefore, we suggest that V3 serology be used instead of DNA sequencing where resources are limited. Samples giving indeterminate results by V3 peptide serology should be analyzed by direct DNA sequencing to distinguish between B-GPGR and the Brazilian variant B"-GWGR.
Resumo:
Several methods are used to estimate anaerobic threshold (AT) during exercise. The aim of the present study was to compare AT obtained by a graphic visual method for the estimate of ventilatory and metabolic variables (gold standard), to a bi-segmental linear regression mathematical model of Hinkley's algorithm applied to heart rate (HR) and carbon dioxide output (VCO2) data. Thirteen young (24 ± 2.63 years old) and 16 postmenopausal (57 ± 4.79 years old) healthy and sedentary women were submitted to a continuous ergospirometric incremental test on an electromagnetic braking cycloergometer with 10 to 20 W/min increases until physical exhaustion. The ventilatory variables were recorded breath-to-breath and HR was obtained beat-to-beat over real time. Data were analyzed by the nonparametric Friedman test and Spearman correlation test with the level of significance set at 5%. Power output (W), HR (bpm), oxygen uptake (VO2; mL kg-1 min-1), VO2 (mL/min), VCO2 (mL/min), and minute ventilation (VE; L/min) data observed at the AT level were similar for both methods and groups studied (P > 0.05). The VO2 (mL kg-1 min-1) data showed significant correlation (P < 0.05) between the gold standard method and the mathematical model when applied to HR (r s = 0.75) and VCO2 (r s = 0.78) data for the subjects as a whole (N = 29). The proposed mathematical method for the detection of changes in response patterns of VCO2 and HR was adequate and promising for AT detection in young and middle-aged women, representing a semi-automatic, non-invasive and objective AT measurement.
Resumo:
Osmotic dehydration of cherry tomato as influenced by osmotic agent (sodium chloride and a mixed sodium chloride and sucrose solutions) and solution concentration (10 and 25% w/w) at room temperature (25°C) was studied. Kinetics of water loss and solids uptake were determined by a two parameter model, based on Fick's second law and applied to spherical geometry. The water apparent diffusivity coefficients obtained ranged from 2.17x10-10 to 11.69x10-10 m²/s.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.
Resumo:
This paper was designed to evaluate the rancidity of 18 pet food samples using the Diamed FATS kits and official AOCS methods for the quantification of free fatty acids, peroxide value and concentrations of malonaldehyde and alkenal in the lipid extracted. Although expiration dates have passed, the samples presented good quality evidencing little oxidative rancidity. The results of this study suggest that the Brazilian pet food market is replete with products of excellent quality due to the competitiveness of this market sector.
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.
Resumo:
Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.
Resumo:
The objective of this work was to determine and model the infrared dehydration curves of apple slices - Fuji and Gala varieties. The slices were dehydrated until constant mass, in a prototype dryer with infrared heating source. The applied temperatures ranged from 50 to 100 °C. Due to the physical characteristics of the product, the dehydration curve was divided in two periods, constant and falling, separated by the critical moisture content. A linear model was used to describe the constant dehydration period. Empirical models traditionally used to model the drying behavior of agricultural products were fitted to the experimental data of the falling dehydration period. Critical moisture contents of 2.811 and 3.103 kgw kgs-1 were observed for the Fuji and Gala varieties, respectively. Based on the results, it was concluded that the constant dehydration rates presented a direct relationship with the temperature; thus, it was possible to fit a model that describes the moisture content variation in function of time and temperature. Among the tested models, which describe the falling dehydration period, the model proposed by Midilli presented the best fit for all studied conditions.
Resumo:
A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Resumo:
A mathematical model previously developed to study microbial growth in food products under an isothermal environment was adapted to a time-varying temperature regime. The resulting model was applied to study the growth of Clostridium perfringens in meat products. This micro-organism is of particular relevance to public health and economy due to the loss of productivity caused by it. Results showed a similar performance of the model used compared to the Baranyi model under an isothermal situation and a slightly better performance under a non-isothermal temperature profile.
Resumo:
Celery (Apium graveolens L. var. secalinum Alef) leaves with 50±0.07 g weight and 91.75±0.15% humidity (~11.21 db) were dried using 8 different microwave power densities ranging between 1.8-20 W g-1, until the humidity fell down to 8.95±0.23% (~0.1 db). Microwave drying processes were completed between 5.5 and 77 min depending on the microwave power densities. In this study, measured values were compared with predicted values obtained from twenty thin layer drying theoretical, semi-empirical and empirical equations with a new thin layer drying equation. Within applied microwave power density; models whose coefficient and correlation (R²) values are highest were chosen as the best models. Weibull distribution model gave the most suitable predictions at all power density. At increasing microwave power densities, the effective moisture diffusivity values ranged from 1.595 10-10 to 6.377 10-12 m2 s-1. The activation energy was calculated using an exponential expression based on Arrhenius equation. The linear relationship between the drying rate constant and effective moisture diffusivity gave the best fit.