999 resultados para pH concentration
Resumo:
* Arbuscular mycorrhizal fungi (AMF) are plant symbionts that improve floristic diversity and ecosystem productivity. Many AMF species are generalists with wide host ranges. Arbuscular mycorrhizal fungi individuals are heterokaryotic, and AMF populations are genetically diverse. Populations of AMF harbor two levels of genetic diversity on which selection can act, namely among individuals and within individuals. Whether environmental factors alter genetic diversity within populations is still unknown. * Here, we measured genetic changes and changes in fitness-related traits of genetically distinct AMF individuals from one field, grown with different concentrations of available phosphate or different host species. * We found significant genotype-by-environment interactions for AMF fitness traits in response to these treatments. Host identity had a strong effect on the fitness of different AMF, unearthing a specificity of response within Glomus intraradices. Arbuscular mycorrhizal fungi individuals grown in novel environments consistently showed a reduced presence of polymorphic genetic markers, providing some evidence for host or phosphate-induced genetic change in AMF. * Given that AMF individuals can form extensive hyphal networks colonizing different hosts simultaneously, contrasting habitats or soil properties may lead to evolution in the population. Local selection may alter the structure of AMF populations and maintain genetic diversity, potentially even within the hyphal network of one fungus.
Resumo:
Acid-sensing ion channels are members of the epithelial Na(+) channel/degenerin family. They are neuronal nonvoltage-gated Na(+) channels that are activated by extracellular acidification. In this study, we investigated the role of a highly conserved region of the extracellular part of ASIC1a that forms the contact between the finger domain, the adjacent beta-ball, and the upper palm domain in ASIC1a. The finger domain contributes to the pH-dependent gating and is linked via this contact zone to the rest of the protein. We found that mutation to Cys of residues in this region led to decreased channel expression and current amplitudes. Exposure of the engineered Cys residues to Cd(2+) or to charged methane thiosulfonate sulfhydryl reagents further reduced current amplitudes. This current inhibition was not due to changes in acid-sensing ion channel pH dependence or unitary conductance and was likely due to a decrease of the probability of channel opening. For some mutants, the effect of sulfhydryl reagents depended on the pH of exposure in the range 7.4 to 6.8, suggesting that this zone undergoes conformational changes during inactivation. Our study identifies a region in ASIC1a whose integrity is required for normal channel function.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.
Resumo:
The canvas support in easel paintings is composed mainly of cellulose. One of the maindegradation paths of cellulose is acid-catalysed hydrolysis, which means that in an acidic environment (low pH), its degradation proceeds at a faster rate (Strlič et al., 2005).The main effect of acid-catalysed hydrolysis is the breaking up of the polymer chains,measured by the “Degree of Polymerisation” (DP). The lowering of the DP value impliesa lower mechanical strength of the textile (Scicolone, 1993), and thus this parameter canbe used to monitor degradation. Knowing these two parameters can, therefore, be veryinformative regarding the condition of the canvas support.
Resumo:
This paper presents the preliminary findings of pH and colour measurements carried out on artworks on paperand on wood that had been treated with a poly(vinyl acetate) (PVAC) based adhesive in the 1980s. In both cases, areas treated with PVAC proved to be less acidic than untreated areas. Contrary to expectations, the conservation treatments have not, as yet, increased acidity levels in the objects under study. Colour measurements of the works on paper showed that those that had been backed with a cotton fabric using a mixture of methylcellulose and PVAC were less yellow than those from the same print run that had not been backed. This finding suggests that the backing somehow prevented the natural degradation of the support. In view of these preliminary results, further research is clearly needed. This study forms part of a broader ongoing project to assess the role of PVAC in the conservation of a range of cultural assets.
Resumo:
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.
Resumo:
This book, published jointly by the American Society of Agronomy, Soil Science Society of American and Iowa State University presents the papers that were given at a symposium held in Ames, Iowa, on Nov. 30 and Dec. 1, 1965 on the general topic of plant environment and efficient water use.
Resumo:
Selostus: Valkuaistäydennyksen vaikutus lypsylehmän pötsistä virtaavan liukoisen rehuperäisen typen pitoisuuteen ja määrään sisärehuruokinnalla
Resumo:
Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients' morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring. Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66 +/- 10% (mean +/- SD), a maximum plasma concentration of 3.1 +/- 0.8 mg/L after a dose of 450 mg and of 6.6 +/- 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0 +/- 1.0 hours, area under the plasma concentration-time curve values of 29.1 +/- 5.3 mg.h/L and 51.9 +/- 18.3 mg.h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 +/- 3.8 L/h, an elimination half-life of 5.3 +/- 1.5 hours and an apparent terminal volume of distribution of 101 +/- 36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption. The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC(50)) among CMV clinical strains of 0.7 mg/L (range 0.2-1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated. The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
The isotopic concentrations of carapace scutes, skin, muscle and blood of loggerhead sea turtles (Caretta caretta) from the Balearic Archipelago were analysed to investigate the pattern of variation between tissues and to assess the position of this species in the trophic webs of the Algerian Basin. Skin showed higher δ13C values than muscle or carapace scutes and these showed higher values than blood. Conversely, muscle showed higher δ15N values than skin, skin showed higher values than blood and blood showed higher values than carapace scutes. Dead and live sea turtles from the same habitat did not differ in the concentration of stable isotopes. However, some of the tissues of the turtles caught in drifting longlines in the oceanic realm showed higher δ13C values than those from the turtles caught by hand or in trammel nets over the continental shelf, although they did not differ in the δ15N. Comparison of the concentration of stable isotopes in the turtles with that of other species from several areas of the Algerian Basin revealed that they consumed planktonic prey and that the trophic level of the sea turtles was higher than that of carnivorous cnidarians but lower than that of zooplanktophagous fish and crustaceans.
Resumo:
The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.