972 resultados para organic matter input


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analyses of extractable organic matter from selected core samples obtained at DSDP Site 535 in the eastern Gulf of Mexico show that the asphalt (or tar) and adjacent oil stains in Lower Cretaceous fractured limestones have a common origin and are not derived from the surrounding organic-matter-rich limestones. Organic matter indigenous to those surrounding limestones was shown to be thermally immature and incapable of yielding the hydrocarbon mixture discovered. In contrast, the oil-stained and asphaltic material appears to be a post-migration alteration product of a mature oil that has migrated from source rocks deeper in the section, or from stratigraphically equivalent but compositionally different source-facies down-dip from the drill site. Further, hydrocarbons of the altered petroleum residues were shown to be similar to Sunniland-type oils found in Lower Cretaceous rocks of South Florida. The results suggest that shallowwater, platform-type source-rock facies similar to those that generated Sunniland-type oils, or deeper-water facies having comparable oil-generating material, are present in this deep-water (> 3000 m) environment. These findings have important implications for the petroleum potential in the eastern Gulf of Mexico and for certain types of deep-sea sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drilling at Site 534 in the Blake-Bahama Basin recovered 268 m of Lower Cretaceous, Berriasian to Hauterivian, pelagic carbonates, together with volumetrically minor intercalations of claystone, black shales, and terrigenous and calcareous elastics. Radiolarian nannofossil pelagic carbonates accumulated in water depths of about 3300 to 3650 m, below the ACD (aragonite compensation depth) but close to the CCD (calcite compensation depth). Radiolarian abundance points to a relatively fertile ocean. In the Hauterivian and Barremian, during times of warm, humid climate and rising sea level, turbiditic influxes of both terrigenous and calcareous sediments, and minor debris flows were derived from the adjacent Blake Plateau. The claystones and black shales accumulated on the continental rise, then were redeposited onto the abyssal plain by turbidity currents. Dark organic-rich and pale organic-poor couplets are attributed to climatic variations on land, which controlled the input of terrigenous organic matter. Highly persistent, fine, parallel lamination in the pelagic chalks is explained by repeated algal "blooms." During early diagenesis, organic-poor carbonates remained oxygenated and were cemented early, whereas organic-rich intervals, devoid of burrowing organisms, continued to compact later in diagenesis. Interstitial dissolved-oxygen levels fluctuated repeatedly, but bottom waters were never static nor anoxic. The central western Atlantic in the Lower Cretaceous was thus a relatively fertile and wellmixed ocean basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organic facies of Cenozoic sediments cored at DSDP Sites 548-551 along the Celtic Sea margin of the northern North Atlantic (Goban Spur) is dominated by terrestrially derived plant remains and charcoal. Similar organic facies also occur in the Lower and Upper Cretaceous sections at these sites. Mid-Cretaceous (uppermost Albian-Turonian) sediments at Sites 549-551, however, record two different periods of enrichment in organic material, wherein marine organic matter was mixed with terrestrial components. The earlier period is represented only in the uppermost Albianmiddle Cenomanian section at the most seaward site, 550. Here, dark laminated marly chalks rich in organic matter occur rhythmically interbedded with light-colored, bioturbated marly chalks poor in organic matter, suggesting that bottom waters alternated between oxidizing and reducing conditions. A later period of enrichment in organic material is recorded in the upper Cenomanian-Turonian sections at Sites 549 and 551 as a single, laminated black mudstone interval containing biogenic siliceous debris. It was deposited along the margin during a time of oxygen deficiency associated with upwelling-induced intensification and expansion of the mid-water oxygen-minimum layer. In both the earlier and later events, variations in productivity appear to have been the immediate cause of oxygen depletion in the bottom waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cretaceous and Jurassic sediments 435 m thick were drilled at Site 511, in the basin province of the Falkland Plateau, during DSDP Leg 71. The calcareous Unit 3 and the clayey zeolitic Unit 4, both of Senonian age, revealed poorly preserved organic matter indicative of oxidized environments. The same characteristics prevailed for the clayey Unit 5 of Turonian to Albian age. Strictly reducing environments existed for black facies along Unit 6 of earliest Albian to Late Jurassic age and allowed the preservation of a rich organic material that is marine in origin. Besides the transition from reducing conditions in Unit 6 to oxidizing conditions in Unit 5, there are 20 meters of sediments in Cores 56-58 where detrital, nonmarine and then marine organic matter, both implying more or less reducing environments, are interlain by poorly preserved material. In the black shales of the bottom Cores 69 and 70, some nonmarine detritus is mixed with the predominantly marine organic material. An immature stage of evolution can be assigned to all of the samples studied. The chapter also undertakes a comparison with contemporaneous lithologies at adjacent Sites 327 and 330 and attempts some reconstruction of the geography of the eastern Falkland Plateau during the Mesozoic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pyrolysis assay, bitumen analysis, and elemental analysis of kerogen were used to characterize the organic matter of selected core samples from Hole 534A (Leg 76) and Hole 391C (Leg 44) on the Blake-Bahama Plateau. The organic matter throughout the stratigraphic section appears to be principally of a terrestrial origin. The data from several isolated horizons in the Hatteras and Blake-Bahama Formations imply the presence of significant quantities of autochthonous marine organic matter. However, these horizons appear so limited that they cannot be considered potential liquid hydrocarbon source rocks. All the analyzed samples are immature and have not evolved sufficiently to enter into the main stage of hydrocarbon generation. The temporal and spatial restrictions of strata rich in marine organic matter suggest that they do not represent major expansions and contractions of anoxic bottom-water masses, but represent limited occurrences of anoxic conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The average total organic carbon (TOC) content obtained after Rock-Eval/TOC analysis of 156 sediment samples from the eight sites cored during Leg 135 is 0.05%. Hence, the TOC content of Leg 135 sediments is extremely low. The organic matter that is present in these samples is probably mostly reworked and oxidized material. Ten sediment samples were selected for extraction and analysis by gas chromatography and gas chromatography-mass spectrometry. Very low amounts of extractable hydrocarbons were obtained and some aspects of the biomarker distributions suggest that these hydrocarbons are not representative of the organic matter indigenous to the samples. A sample of an oil seep from Pili, Tongatapu was also analyzed. The seep is a biodegraded, mature oil that shows many characteristics in common with previously published analyses of oil seeps from Tongatapu. Biomarker evidence indicates that its source is a mature, marine carbonate of probable Late Cretaceous-Early Tertiary age. The source rock responsible for the Tongatapu oil seeps remains unknown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual kerogen and total organic carbon determinations indicate that there are two periods of organic enrichment events in the Mesozoic sediments of the South Atlantic. The first period, from the Late Jurassic through the late Aptian, is recorded in sediments from the Falkland Plateau, the Cape Basin, and the Angola Basin. Apparently, salinity stratification in the restricted basin, coupled with rising sea level, led to bottom water anoxia and organic enrichment. The second event, from the late Albian to the Santonian period, is recorded in sediments from the Angola Basin and the Sao Paulo Plateau. It appears to have been caused by development of an anoxic oxygen minimum zone at midwater depths. Organic matter sedimentation in the Mesozoic South Atlantic is controlled by geologic, climatic, eustatic, and Oceanographic factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m**2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At Site 535, the four lithologic units of Cretaceous age are controlled by two types of sedimentologic facies: (1) the massive light-colored limestones or marly limestones in which the total organic carbon (TOC) content is low and the organic matter more or less oxidized and (2) laminated dark facies in which the TOC content is higher and associated with a well-preserved organic matter of Type II origin. Very little typical Type III organic matter occurs in the whole series from late Berriasian to Aptian and Cenomanian. Fluctuations from oxidizing to reducing environments of deposition are proposed to account for the variations in properties of the Type II organic matter between the different facies. Dark laminated layers are good but immature potential source rocks: petroleum potential is often higher than 2 kg HC/t of rock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding phosphorus (P) geochemistry and burial in oceanic sediments is important because of the role of P for modulating oceanic productivity on long timescales. We investigated P geochemistry in seven equatorial Pacific sites over the last 53 Ma, using a sequential extraction technique to elucidate sedimentary P composition and P diagenesis within the sediments. The dominant P-bearing component in these sediments is authigenic P (61-86% of total P), followed in order of relative dominance by iron-bound P (7-17%), organic P (3-12%), adsorbed P (2-9%), and detrital P (0-1%). Clear temporal trends in P component composition exist. Organic P decreases rapidly in younger sediments in the eastern Pacific (the only sites with high sample resolution in the younger intervals), from a mean concentration of 2.3 µmol P/g sediment in the 0-1 Ma interval to 0.4 µmol/g in the 5- 6 Ma interval. Over this same time interval, decreases are also observed for iron-bound P (from 2.1 to 1.1 µmol P/g) and adsorbed P (from 1.5 to 0.7 µmol P/g). These decreases are in contrast to increases in authigenic P (from 6.0-9.6 µmol P/g) and no significant changes in detrital P (0.1 µmol P/g) and total P (12 µmol P/g). These temporal trends in P geochemistry suggest that (1) organic matter, the principal shuttle of P to the seafloor, is regenerated in sediments and releases associated P to interstitial waters, (2) P associated with iron-rich oxyhydroxides is released to interstitial waters upon microbial iron reduction, (3) the decrease in adsorbed P with age and depth probably indicates a similar decrease in interstitial water P concentrations, and (4) carbonate fluorapatite (CFA), or another authigenic P-bearing phase, precipitates due to the release of P from organic matter and iron oxyhydroxides and becomes an increasingly significant P sink with age and depth. The reorganization of P between various sedimentary pools, and its eventual incorporation in CFA, has been recognized in a variety of continental margin environments, but this is the first time these processes have been revealed in deep-sea sediments. Phosphorus accumulation rate data from this study and others indicates that the global pre-anthropogenic input rate of P to the ocean (20x10**10 mol P/yr) is about a factor of four times higher than previously thought, supporting recent suggestions that the residence time of P in the oceans may be as short as 10000-20000 years.