979 resultados para optical properties.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoporous In2O3 nanocrystal clusters with high surface areas have been synthesized by a one-step solvent-thermal method at a relatively low temperature. On the basis of our experimental data and nanomaterial growth mechanism, a template-assistant dehydration accompanied by aggregation mechanism was proposed to explain their formation. Besides, the influence of the high-temperature treatment on their porous structure and optical properties were studied and compared by various technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)(9)NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One-dimensional La(OH)(3) nanocrystals with multiform morphologies have been successfully synthesized by a facile bydrothermal process without using any surfactant, catalyst, or template. It can be found that the pH values of the initial solutions and the alkaline sources play a crucial role in controlling the morphologies of the products. The possible formation process of the 1D samples was investigated in detail, Furthermore, the as-prepared Tb3+-doped La(OH)(3) samples show a strong green emission corresponding to D-5(4)-F-7(5) transition of the Tb3+ ions under ultraviolet or low-voltage excitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a comparative quantum-chemical study of the electronic structures and optical properties of a series of cationic complexes [M(ppy)(2)(N--N)](+) (N--N = Hcmbpy = 4-carboxy-4'-methylbpy, M = Rh (Rh1), Ir(Ir2); N--N = H(2)dcbpy = 4,4'-dicarboxy-bpy, M = Rh (Rh3) and Ir (Ir4)). The theoretical calculation reveals that the increased number of -COOH groups on the bpy ligand can decrease the energy levels of LUMO more than HOMO and narrow down the HOMO-LUMO energy gaps, which results in the red-shifted of the lowest-lying absorption and phosphorescent spectra. The lowest-lying singlet absorptions were categorized as d(M,M = Rh or Ir) + pi(ppy) -->pi*(bpy) with MLCT and LLCT characters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strontium hydroxyapatite (Sr-5(PO4)(3)OH, SrHAp) microspheres with 3D architectures have been successfully prepared through a efficient and facile solvothermal process. The experimental results indicate that the SrHAP microspheres are composed of a large amount of nanosheets, which are assembled in a radial form from the center to the surface of the microspheres. The as-obtained SrHAp samples show an intense and bright blue emission from 350 to 570 nm centered at 427 nm (CIE coordinates: x = 0.153, y = 0.081; lifetime: 9.2 ns; quantum efficiency: 31%) under long-wavelength UV light excitation (344 nm). This blue emission might result from the CO2 center dot- radical impurities in the crystal lattice. Furthermore, the surfactants CTAB and trisodium citrate have an obvious impact on the morphologies and the luminescence properties of the products, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we reported the synthesis of nearly monodisperse and well-defined one-dimensional (1D) rare earth fluoride(beta-NaREF4) (RE = Y, Sm, Eu, Gd, Tb, Dy, and Ho) nanowires/nanorods by in situ acid corrosion and anion exchange approach using RE(OH)(3) as precursors via a facile hydrothermal route. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy. scanning electron microscopy (SEM), transmission electron microscopy (TEM). high-resolution transmission electron microscopy (HRTEM), and photoluminescence(PL)spectroscopy were used to characterize the samples. The results show that the as-prepared rare earth fluoride (beta-NaREF4) nanowires/nanorods preserve the basic morphology of the initial RE(OH)(3) precursors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many efforts have been devoted to exploring novel luminescent materials that not contain expensive or toxic elements, or do not need a mercury vapor plasma source. In this paper, BPO4 and Li+-doped BPO4 powder samples were prepared by the Pechini-type sol-gel (PSG) process. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that PSG -derived Li+-doped BPO4 annealed at 960 degrees C exhibited bright bluish-white emission centered at 416 nm. The luminescence decay curves analysis indicates that each sample has two kinds of lifetimes (5.9 ns and 0.529 ms) and two types of kinetic decay behaviors which can be fitted into a single-exponential function and a double-exponential function, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gd2MoO6:Eu3+ nanofibers and nanobelts have been prepared by a combination method of the sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy, photoluminescence, and low voltage cathodoluminescence as well as kinetic decays were used to characterize the resulting samples. The results of XRD and FTIR indicate that the Gd2MoO6:Eu3+ samples have crystallized at 600 degrees C with the monoclinic (alpha) structure. The SEM and TEM results indicate that the as-formed precursor fibers and belts are uniform and that the as-prepared nanofibers and nanobelts consist of nanoparticles. Gd2MoO6:Eu3+ phosphors show their strong characteristic emission under UV excitation (353 nm) and low voltage electron-beam excitation (3 kV), making the materials have potential applications in fluorescent lamps and field-emission displays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).