990 resultados para nutrient accumulation rates


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiocarbon measurements on core tops from the Ontong-Java plateau confirm a previous finding by Berger and Killingley [1982] that at any given water depth, cores taken on the equator have higher accumulation rates and younger core top ages than their off-equator counterparts. Further, these new results fortify the conclusion by Broecker et al. [1991] that the increase in core top radiocarbon age with water depth rules out homogeneous dissolution within the pore waters as the dominant mechanism. Either most of the dissolution must occur prior to burial or it must occur during the first pass through the respiration-CO2-rich upper pore waters after which the calcite grains become armored against further dissolution. A puzzling aspect of this new data set is that despite the sizable difference in accumulation rate, the extent of dissolution as measured by either the CaCO3 content or the ratio of CaCO3 in the >150-µm size fraction to that in the < 63-µm fraction is no different off than on the equator. In order to reconcile the results of this study with those obtained by Hales and Emerson [1996] using in situ electrodes, it is necessary to call upon calcite armoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of nine consolidation and permeability tests are presented for sediment samples from the Japan Trench and Nankai Trough sites of Leg 87. Coring and degassing disturbance results in an underconsolidated state for most Site 582 samples; however, the compressional effects of the subduction zone and high sediment accumulation rates may also play a role in causing underconsolidation. Samples collected at Site 583 exhibit similar evidence of disturbance but are slightly overconsolidated, confirming the possibility of sediment erosion at this site. The highly diatomaceous sediments at Site 584 are all overconsolidated, but the trend of overconsolidation decreases with depth. Disturbances of the diatom clay structure may increase the sediment compressibility and create this apparent overconsolidation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microscopic studies reveal a predominance of terrestrial organic matter in sediments of Site 808. Terrestrial vitrinite and inertinite are more abundant (73% to 100%) than marine organic matter (alginite, 0% to 27%), which increases from open oceanic deposits of the Shikoku Basin sediments to sediments of the outer trench wedge. The abundance of terrestrial organic matter is also reflected through carbon isotope values of -23 per mil to -25.9 per mil. Mass accumulation rates of organic carbon are low in hemipelagic sediments of the Shikoku Basin (<0.2 g/cm**2/k.y.) but increase significantly in sediments of the Nankai Trench (0.2 to 1.7 g/cm**2/k.y.). Although the organic mass accumulation is high in sediments of the Nankai Trench, a comparison of sedimentation rates and total organic carbon suggests relative dilution of organic carbon through turbidite flows. Calculated marine paleoproductivity of organic carbon is low in sediments of the open ocean (Shikoku Basin) and increases closer to the shore (Nankai Trench). Thermal evolution of organic matter is obtained from vitrinite reflectance measurements. Two populations of vitrinites have been observed between 600 and 1234 mbsf. Reflectance values change with increasing depth and temperature in both groups of vitrinite (0.3% to 0.68% in group 1; 0.6% to 1% in group 2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000-5100 years BP, 3500-2700 years BP, and 1600-700 years BP; lower current speeds existed during the time intervals 5100-3500 years BP, 2700-1600 years BP, and 700-100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of DSDP Leg 73 was to obtain high-quality records of major paleooceanographic events in the South Atlantic. This was achieved by coring six sites on the African plate. The sediments thus recovered span the Cenozoic and five of the six sites proved ideally suited for magnetostratigraphic analysis. The results presented in this paper and elsewhere in this volume constitute the first opportunity to extend the direct correlation of the magnetostratigraphic and biostratigraphic time-scales into the Paleogene in deep-sea cores. The magnetostratigraphic analyses from DSDP Leg 73 sediments are presented in this paper. The correlation of the magnetostratigraphy to the magnetic polarity time-scale provides tight age-depth control for the five sites analyzed, allowing the accurate calculation of sediment accumulation rates. The data presented here represent a remarkable record of the fine-scale polarity history of the Earth's magnetic field. These data place constraints on the interpretation of smallscale marine magnetic anomalies which are modelled equally effectively by field intensity fluctuations as polarity reversals. At least some of the "tiny wiggles" correspond to very short polarity units in the magnetostratigraphic record. By assuming an axial geocentric dipole, the inclination of the time-averaged magnetic field recorded in the sediments can be used to calculate the paleolatitude at which the sediments were deposited. Combining the age and average inclination information available from the magnetostratigraphy, we present paleolatitudes versus time for the Leg 73 drill sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the summer of 2003, a ground-penetrating radar survey around the North Greenland Icecore Project (NorthGRIP) deep ice-core drilling site (75°06' N, 42°20' W; 2957 m a.s.l.) was carried out using a shielded 250 MHz radar system. The drill site is located on an ice divide, roughly 300 km north-northwest of the summit of the Greenland ice sheet. More than 430 km of profiles were measured, covering a 10 km by 10 km area, with a grid centered on the drilling location, and eight profiles extending beyond this grid. Seven internal horizons within the upper 120 m of the ice sheet were continuously tracked, containing the last 400 years of accumulation history. Based on the age-depth and density-depth distribution of the deep core, the internal layers have been dated and the regional and temporal distribution of accumulation rate in the vicinity of NorthGRIP has been derived. The distribution of accumulation shows a relatively smoothly increasing trend from east to west from 145 kg/m**2/a to 200 kg/m**2/a over a distance of 50 km across the ice divide. The general trend is overlain by small-scale variations on the order of 2.5 kg/m**2/a/km, i.e. around 1.5% of the accumulation mean. The temporal variations of the seven periods defined by the seven tracked isochrones are on the order of +-4% of the mean of the last 400 years, i.e. at NorthGRIP ±7 kg/m**2/a. If the regional accumulation pattern has been stable for the last several thousand years during the Holocene, and ice flow has been comparable to today, advective effects along the particle trajectory upstream of NorthGRIP do not have a significant effect on the interpretation of climatically induced changes in accumulation rates derived from the deep ice core over the last 10 kyr.