957 resultados para numerical simulations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple alternating zonal jets are a ubiquitous feature of planetary atmospheres and oceans. However, most studies to date have focused on the special case of barotropic jets. Here, the dynamics of freely evolving baroclinic jets are investigated using a two-layer quasigeostrophic annulus model with sloping topography. In a suite of 15 numerical simulations, the baroclinic Rossby radius and baroclinic Rhines scale are sampled by varying the stratification and root-mean-square eddy velocity, respectively. Small-scale eddies in the initial state evolve through geostrophic turbulence and accelerate zonally as they grow in horizontal scale, first isotropically and then anisotropically. This process leads ultimately to the formation of jets, which take about 2500 rotation periods to equilibrate. The kinetic energy spectrum of the equilibrated baroclinic zonal flow steepens from a −3 power law at small scales to a −5 power law near the jet scale. The conditions most favorable for producing multiple alternating baroclinic jets are large baroclinic Rossby radius (i.e., strong stratification) and small baroclinic Rhines scale (i.e., weak root-mean-square eddy velocity). The baroclinic jet width is diagnosed objectively and found to be 2.2–2.8 times larger than the baroclinic Rhines scale, with a best estimate of 2.5 times larger. This finding suggests that Rossby wave motions must be moving at speeds of approximately 6 times the turbulent eddy velocity in order to be capable of arresting the isotropic inverse energy cascade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To mitigate the inter-carrier interference (ICI) of doubly-selective (DS) fading channels, we consider a hybrid carrier modulation (HCM) system employing the discrete partial fast Fourier transform (DPFFT) demodulation and the banded minimum mean square error (MMSE) equalization in this letter. We first provide the discrete form of partial FFT demodulation, then apply the banded MMSE equalization to suppress the residual interference at the receiver. The proposed algorithm has been demonstrated, via numerical simulations, to be its superior over the single carrier modulation (SCM) system and circularly prefixed orthogonal frequency division multiplexing (OFDM) system over a typical DS channel. Moreover, it represents a good trade-off between computational complexity and performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the UK. For each case, a 2.2-km grid-length 12-member ensemble and 1.5-km grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Westerly wind bursts (WWBs) that occur in the western tropical Pacific are believed to play an important role in the development of El Niño events. Here, following the study of Lengaigne et al. (Clim Dyn 23(6):601–620, 2004), we conduct numerical simulations in which we reexamine the response of the climate system to an observed wind burst added to a coupled general circulation model. Two sets of twin ensemble experiments are conducted (each set has control and perturbed experiments). In the first set, the initial ocean heat content of the system is higher than the model climatology (recharged), while in the second set it is nearly normal (neutral). For the recharged state, in the absence of WWBs, a moderate El Niño with a maximum warming in the central Pacific (CP) develops in about a year. In contrast, for the neutral state, there develops a weak La Niña. However, when the WWB is imposed, the situation dramatically changes: the recharged state slides into an El Niño with a maximum warming in the eastern Pacific, while the neutral set produces a weak CP El Niño instead of previous La Niña conditions. The different response of the system to the exact same perturbations is controlled by the initial state of the ocean and the subsequent ocean–atmosphere interactions involving the interplay between the eastward shift of the warm pool and the warming of the eastern equatorial Pacific. Consequently, the observed diversity of El Niño, including the occurrence of extreme events, may depend on stochastic atmospheric processes, modulating El Niño properties within a broad continuum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of the Tibetan Plateau uplift on the Asian monsoons and inland arid climates is an important but also controversial question in studies of paleoenvironmental change during the Cenozoic. In order to achieve a good understanding of the background for the formation of the Asian monsoons and arid environments, it is necessary to know the characteristics of the distribution of monsoon regions and arid zones in Asia before the plateau uplift. In this study, we discuss in detail the patterns of distribution of the Asian monsoon and arid regions before the plateau uplift on the basis of modeling results without topography from a global coupled atmosphere–ocean general circulation model, compare our results with previous simulation studies and available biogeological data, and review the uncertainties in the current knowledge. Based on what we know at the moment, tropical monsoon climates existed south of 20°N in South and Southeast Asia before the plateau uplift, while the East Asian monsoon was entirely absent in the extratropics. These tropical monsoons mainly resulted from the seasonal shifts of the Inter-Tropical Convergence Zone. There may have been a quasi-monsoon region in central-southern Siberia. Most of the arid regions in the Asian continent were limited to the latitudes of 20–40°N, corresponding to the range of the subtropical high pressure year-around. In the meantime, the present-day arid regions located in the relatively high latitudes in Central Asia were most likely absent before the plateau uplift. The main results from the above modeling analyses are qualitatively consistent with the available biogeological data. These results highlight the importance of the uplift of the Tibetan Plateau in the Cenozoic evolution of the Asian climate pattern of dry–wet conditions. Future studies should be focused on effects of the changes in land–sea distribution and atmospheric CO2 concentrations before and after the plateau uplift, and also on cross-comparisons between numerical simulations and geological evidence, so that a comprehensive understanding of the evolution of the Cenozoic paleoenvironments in Asia can be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The horizontal gradient of potential vorticity (PV) across the tropopause typically declines with lead time in global numerical weather forecasts and tends towards a steady value dependent on model resolution. This paper examines how spreading the tropopause PV contrast over a broader frontal zone affects the propagation of Rossby waves. The approach taken is to analyse Rossby waves on a PV front of finite width in a simple single-layer model. The dispersion relation for linear Rossby waves on a PV front of infinitesimal width is well known; here an approximate correction is derived for the case of a finite width front, valid in the limit that the front is narrow compared to the zonal wavelength. Broadening the front causes a decrease in both the jet speed and the ability of waves to propagate upstream. The contribution of these changes to Rossby wave phase speeds cancel at leading order. At second order the decrease in jet speed dominates, meaning phase speeds are slower on broader PV fronts. This asymptotic phase speed result is shown to hold for a wide class of single-layer dynamics with a varying range of PV inversion operators. The phase speed dependence on frontal width is verified by numerical simulations and also shown to be robust at finite wave amplitude, and estimates are made for the error in Rossby wave propagation speeds due to the PV gradient error present in numerical weather forecast models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations are carried out to examine the role of the Kuo and Kain-Fritsch (KF) cumulus parameterization schemes and dry dynamics on a cyclone development, in a weak baroclinic atmosphere, over subtropical South Atlantic Ocean. The initial phase of the cyclone development is investigated with a coarse horizontal mesh (75 km) and when the cyclone reaches the mature stage two different horizontal resolutions are used (75 and 25 km). The best performance simulation for the cyclone initial phase occurs when the Kuo convective scheme is applied, and this may be attributed to a greater diabatic warming in the troposphere. On the other hand, the dry simulation is not capable of simulating the correct location and intensity of the cyclone in its initial phase. During the mature phase, a cyclone over deepening occurs in the Kuo scheme experiment associated with larger latent heat release in a deep vertical column. The presence of downdraft currents in the KF scheme, which acts to cool and dry the lower levels, is essential to stabilize the atmosphere and to reproduce the nearest observation cyclone deepening rate. The largest cyclone deepening is found in the Kuo scheme high resolution experiment. This suggests that the KF convective scheme is less sensitive to the horizontal grid resolution. It was also revealed that the diabatic processes are crucial to simulate the observed features of this marine cyclone over subtropical region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, observations and numerical simulations are used to investigate how different El Nino events affect the development of SST anomalies in the Atlantic and how this relates to the Brazilian northeast (NE) precipitation. The results show that different types of El Nino have different impacts on the SST anomalies of the equatorial and tropical South Atlantic but a similar SST response in the tropical North Atlantic. Strong and long (weak and short) El Ninos with the main heating source located in the eastern (central) Pacific generate cold (warm) anomalies in the cold tongue and Benguela upwelling regions during boreal winter and spring. When the SST anomalies in the eastern equatorial and tropical South Atlantic are cold (warm), the meridional SST gradient across the equator is positive (negative) and the ITCZ is not allowed (allowed) to move southward during the boreal spring; as a consequence, the precipitation is below (above) the average over the NE. Thus, strong and long (weak and short) El Ninos are followed by dry (wet) conditions in the NE. During strong and long El Ninos, changes in the Walker circulation over the Atlantic and in the Pacific-South Atlantic (PSA) wave train cause easterly wind anomalies in the western equatorial Atlantic, which in turn activate the Bjerknes mechanism, establishing the cold tongue in boreal spring and summer. These easterly anomalies are also responsible for the Benguela upwelling. During short and weak El Ninos, westerly wind anomalies are present in the western equatorial Atlantic accompanied by warm anomalies in the eastern equatorial and tropical South Atlantic; a positive phase of the South Atlantic dipole develops during boreal winter. The simulations highlight the importance of ocean dynamics in establishing the correct slope of the equatorial thermocline and SST anomalies, which in turn determine the correct rainfall response over the NE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of the potential role of aerosols in modifying clouds and precipitation is presented using a numerical atmospheric model. Measurements of cloud condensation nuclei (CCN) and cloud size distribution properties taken in the southwestern Amazon region during the transition from dry to wet seasons were used as guidelines to define the microphysical parameters for the simulations. Numerical simulations were carried out using the Brazilian Development on Regional Atmospheric Modeling System, and the results presented considerable sensitivity to changes in these parameters. High CCN concentrations, typical of polluted days, were found to result in increases or decreases in total precipitation, depending on the level of pollution used as a reference, showing a complexity that parallels the aerosol-precipitation interaction. Our results show that on the grids evaluated, higher CCN concentrations reduced low-to-moderate rainfall rates and increased high rainfall rates. The principal consequence of the increased pollution was a change from a warm to a cold rain process, which affected the maximum and overall mean accumulated precipitation. Under polluted conditions, cloud cover diminished, allowing greater amounts of solar radiation to reach the surface. Aerosol absorption of radiation in the lower layers of the atmosphere delayed convective evolution but produced higher maximum rainfall rates due to increased instability. In addition, the intensity of the surface sensible heat flux, as well as that of the latent heat flux, was reduced by the lower temperature difference between surface and air, producing greater energy stores at the surface.