991 resultados para nuclear proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Irão é desde 1979 uma potência a ter em consideração. A sua história reflecte a força da nação e a razão pela qual é fortemente reprimido pelos seus pares. A presente dissertação pretende abordar a capacidade nuclear e mais concretamente o seu desenvolvimento pela República Islâmica do Irão, assim como todas as medidas de controlo a esta capacidade, procurando despertar a questão de quem deve ou tem capacidade de determinar a detenção e desenvolvimento de energia nuclear. Vivemos hoje, num mundo multipolar com novos arranjos à estrutura internacional outrora conhecida, verificando-se necessárias novas incursões por estas matérias de forma que as mesmas possam evoluir tanto teórica como praticamente a similar ritmo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterium Geobacter sulfurreducens (Gs) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membrane in a process designated as extracellular electron transfer. The Gs genome was fully sequenced and a family composed by five periplasmic triheme cytochromes c7 (designated PpcA-E) was identified. These cytochromes play an important role in the reduction of extracellular acceptors. They contain approximately 70 amino acids, three heme groups with bis-histidinyl axial coordination, and share between 57 and 77% sequence identity. The triheme cytochrome PpcA is highly abundant in Gs and is most likely the reservoir of electrons destined for outer surface. In addition to its role in electron transfer pathways this protein can perform e-/H+ energy transduction, a process that is disrupted when the strictly conserved aromatic residue phenylalanine 15 is replaced by a leucine (PpcAF15L). This Thesis focuses on the expression, purification and characterization of these proteins using Nuclear Magnetic Resonance and ultraviolet-visible spectroscopy. The orientations of the heme axial histidine ring planes and the orientation of the heme magnetic axis were determined for each Gs triheme cytochrome. The comparison of the orientations obtained in solution with the crystal structures available showed significant differences. The results obtained provide the paramagnetic constraints to include in the future refinement of the solution structure in the oxidized state. In this work was also determined the solution structure and the pH-dependent conformational changes of the PpcAF15L allowing infer the structural origin for e-/H+ energy transduction mechanism as shown by PpcA. Finally, the backbone and side chain NH signals of PpcA were used to map interactions between this protein and the putative redox partner 9,10-anthraquinone-2,6-disulfonate (AQDS). In this work a molecular interaction was identified for the first time between PpcA and AQDS, constituting the first step toward the rationalization of the Gs respiratory chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e Tecnologia - SFRH/BD/48804/2008 and the project PTDC/BI/65383/2006 assigned to Prof. Cecíla Roque and also to Associate Laboratory REQUIMTE (Pest-C/EQB/LA0006/2011)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated serum protein fractions, HDL-cholesterol, total immunoglobulin G and total immunoglobulin E levels in patients with acute and chronic paracoccidioidomycosis, by means of electrophoresis, enzymatic reaction and immunoenzymatic assay. The results demonstrated elevated levels of total immunoglobulin G, total immunoglobulin E, alpha-2 and gamma-globulins, which were more evident in acute than in chronic PCM, but no increase in HDL-cholesterol levels. There was a correlation between the levels of total immunoglobulin E and gamma-globulins and the alpha-2 and beta-globulin fractions in the acute form and between beta and gamma-globulins in both the acute and the chronic form. In conclusion, changes in total immunoglobulin G and immunoglobulin E levels and in the electrophoretic profile may be important markers for the prognosis and therapeutic follow-up of PCM cases, especially because protein electrophoresis is a simple laboratory test that can be applied when specific PCM serological tests are not available. In addition, levels of the gamma-globulin fraction greater than 2.0g/dl may suggest that the patient is developing a more severe form of PCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: A pele é o maior órgão do corpo humano e a sua pigmentação é essencial para a sua coloração e proteção contra os efeitos nocivos da radiação ultravioleta (UV). A pigmentação da pele resulta essencialmente de três processos: a síntese e o armazenamento de melanina pelos melanócitos, em organelos especializados denominados melanossomas; o transporte dos melanossomas dentro dos melanócitos; e finalmente, a transferência dos melanossomas para os queratinócitos adjacentes. Nos queratinócitos, a melanina migra para a região perinuclear apical da célula para formar um escudo protetor,responsável pela proteção do DNA dos danos causados pela radiação UV. Os melanócitos estão localizados na camada basal da epiderme e contactam com 30-40 queratinócitos. Em conjunto, estas células formam a “unidade melano-epidérmica”. Apesar dos processos de síntese e transporte de melanina nos melanócitos estarem bastante bem caracterizados, os mecanismos moleculares subjacentes à transferência inter-celular de melanina são menos conhecidos e ainda controversos. Dados preliminares obtidos pelo nosso grupo, que se basearam na observação de amostras de pele humana por microscopia electrónica, indicam que a forma predominante de transferência de melanina na epiderme consiste na exocitose dos melanossomas pelos melanócitos e subsequente endocitose da melanina por queratinócitos. Para além disso sabe-se que as proteínas Rab, que controlam o tráfego membranar, estão envolvidas em várias etapas de pigmentação da pele, nomeadamente na biogénese e no transporte de melanina. Assim, dado o seu papel fundamental nestes processos, questionámo-nos sobre o seu envolvimento na transferência de melanina. Com este trabalho, propomo-nos a expandir o conhecimento atual sobre a transferência de melanina na pele, através do estudo detalhado dos seus mecanismos moleculares, identificando as proteínas Rab que regulam o processo. Pretendemos também confirmar o modelo de exo/endocitose como sendo o mecanismo principal de transferência de melanina. Primeiro, explorámos a regulação da secreção de melanina pelos melanócitos e analisámos o papel de proteínas Rab neste processo. Os resultados foram obtidos recorrendo a um método in vitro, desenvolvido previamente no laboratório, que avalia a quantidade de melanina segregada para o meio de cultura por espectrofotometria, e ainda por microscopia, contando o número de melanossomas transferidos para os queratinócitos. Através de co-culturas de melanócitos e queratinócitos, verificou-se que os queratinócitos estimulam a libertação de melanina dos melanócitos para o meio extra-celular, bem como a sua transferência para os queratinócitos. Além disso, a proteína Rab11b foi identificada como um regulador da exocitose de melanina e da sua transferência para os queratinócitos. De facto, a diminuição da expressão de Rab11b em melanócitos provocou a redução da secreção de melanina estimulada por queratinócitos, bem como da transferência desta. Em segundo lugar, para complementar o nosso estudo, centrámos a nossa investigação na internalização de melanina por queratinócitos. Especificamente, usando uma biblioteca de siRNA, explorámos o envolvimento de proteínas Rab na captação de melanina por queratinócitos. Como primeira abordagem, usámos esferas fluorescentes como substituto de melanina, avaliando os resultados por citometria de fluxo. No entanto, este método revelou-se ineficaz uma vez que a internalização destas esferas é independente do recetor PAR-2 (recetor 2 ativado por protease), que foi previamente descrito como essencial na captação de melanina por queratinócitos Posteriormente, foi desenvolvido um novo protocolo de endocitose baseado em microscopia, usando melanossomas sem a membrana envolvente (melanocores) purificados do meio de cultura de melanócitos, incluindo um programa informático especialmente desenhado para realizar uma análise semi-automatizada. Após internalização, os melanocores acumulam-se na região perinuclear dos queratinócitos, em estruturas que se assemelham ao escudo supranuclear observado na pele humana. Seguidamente, o envolvimento do recetor PAR-2 na captação de melanocores por queratinócitos foi confirmado, utilizando o novo protocolo de endocitose desenvolvido. Para além disso, a necessidade de quatro proteínas Rab foi identificada na internalização de melanocores por queratinócitos. A redução da expressão de Rab1a ou Rab5b em queratinócitos diminuiu significativamente o nível de internalização de melanocores, enquanto o silenciamento da expressão de Rab2a ou Rab14 aumentou a quantidade de melanocores internalizados por estas células. Em conclusão, os resultados apresentados corroboram as observações anteriores, obtidas em amostras de pele humana, e sugerem que o mecanismo de transferência predominante é a exocitose de melanina pelos melanócitos, induzida por queratinócitos, seguida por endocitose pelos queratinócitos. A pigmentação da pele tem implicações tanto ao nível da cosmética, como ao nível médico, relacionadas com foto-envelhecimento e com doenças pigmentares. Assim sendo, ao esclarecer quais os mecanismos moleculares que regulam a transferência de melanina na pele, este trabalho pode conduzir ao desenvolvimento de novas estratégias para modular a pigmentação da pele.----------------ABSTRACT: Skin pigmentation is achieved through the highly regulated production of the pigment melanin in specialized organelles, termed melanosomes within melanocytes. These are transported from their site of synthesis to the melanocyte periphery before being transferred to keratinocytes where melanin forms a supra-nuclear cap to protect the DNA from UVinduced damage. Together, melanocytes and keratinocytes form a functional complex, termed “epidermal-melanin unit”, that confers color and photoprotective properties to the skin. Skin pigmentation requires three processes: the biogenesis of melanin; its intracelular transport within the melanocyte to the cell periphery; and the melanin transfer to keratinocytes. The first two processes have been extensively characterized. However, despite significant advances that have been made over the past few years, the mechanisms underlying inter-cellular transfer of pigment from melanocytes to keratinocytes remain controversial.Preliminary studies from our group using electron microscopy and human skin samples found evidence for a mechanism of coupled exocytosis-endocytosis. Rab GTPases are master regulators of intracellular trafficking and have already been implicated in several steps of skin pigmentation. Thus, we proposed to explore and characterize the molecular mechanisms of melanin transfer and the role of Rab GTPases in this process. Moreover, we investigated whether the exo/endocytosis model is the main mechanism of melanin transfer. We first focused on melanin exocytosis by melanocytes. Then, we started to investigate the key regulatory Rab proteins involved in this step by establishing an in vitro tissue culture model of melanin secretion. Using co-cultures of melanocytes and keratinocytes, we found that keratinocytes stimulate melanin release and transfer. Moreover, depletion of Rab11b decreases keratinocyte-induced melanin exocytosis by melanocytes. In order to determine whether melanin exocytosis is a predominant mechanism of melanin transfer, the amount of melanin transferred to keratinocytes was then assayed in conditions where melanin exocytosis was inhibited. Indeed, Rab11b depletion resulted in a significant decrease in melanin uptake by keratinocytes. Taken together, these observations suggest that Rab11b mediates melanosome exocytosis from melanocytes and transfer to keratinocytes. To complement and extend our study, we of melanin by keratinocytes. Thus, we aimed to explore the effect of depleting Rab GTPases on melanin uptake and trafficking within keratinocytes. As a first approach, we used fluorescent microspheres as a melanin surrogate. However, the uptake of microspheres was observed to be independent of PAR-2, a receptor that is required for melanin uptakecentred our attention in the internalization of melanin by keratinocytes. Thus, we aimed to explore the effect of depleting Rab GTPases on melanin uptake and trafficking within keratinocytes. As a first approach, we used fluorescent microspheres as a melanin surrogate. However, the uptake of microspheres was observed to be independent of PAR-2, a receptor that is required for melanin uptake.Therefore, we concluded that microspheres were uptaken by keratinocytes through a different pathway than melanin. Subsequently, we developed a microscopy-based endocytosis assay using purified melanocores (melanosomes lacking the limiting membrane) from melanocytes, including a program to perform a semi-automated analysis. Melanocores are taken up by keratinocytes and accumulate in structures in the perinuclear area that resemble the physiological supranuclear cap observed in human skin. We then confirmed the involvement of PAR-2 receptor in the uptake of melanocores by keratinocytes, using the newly developed assay. Furthermore, we identified the role of four Rab GTPases on the uptake of melanocores by keratinocytes. Depletion of Rab1a and Rab5b from keratinocytes significantly reduced the uptake of melanocores, whereas Rab2a, and Rab14 silencing increased the amount the melanocores internalized by XB2 keratinocytes. In conclusion, we present evidence supporting keratinocyte-inducedmelanosome exocytosis from melanocytes, followed by endocytosis of the melanin core by keratinocytes as the predominant mechanism of melanin transfer in skin. Although advances have been made, there is a need for more effective and safer therapies directed at pigmentation disorders and also treatments for cosmetic applications. Hence, the understanding of the above mechanisms of skin pigmentation will lead to a greater appreciation of the molecular machinery underlying human skin pigmentation and could interest the pharmaceutical and cosmetic industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part of the work described in this chapter, was the subject of the following publication: D. Vieira, T. a. Figueiredo, A. Verma, R. G. Sobral, A. M. Ludovice, H. de Lencastre, and J. Trincao, “Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan,” Acta Crystallogr. Sect. F Struct. Biol. Commun., vol. 70, no. 5, pp. 1–4, Apr. 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia (FCT) - (PTDC/EBB-EBI/102266/2008 and SFRH/BD/43830/2008, respectively) and by European Community’s FP7/2007-2013 (grant agreement nº 270089)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractINTRODUCTION:The saliva of mosquitoes has an important role in the transmission of several diseases, including malaria, and contains substances with vasomodulating and immunomodulating effects to counteract the host physiological mechanisms and enhance pathogen transmission. As immunomodulatory components, salivary gland proteins can induce the generation of specific IgG antibodies in the host, which can be used as specific biomarkers of exposure to Anopheles sundaicus . The objective of this study was to identify immunogenic proteins from the salivary glands of Anopheles sundaicus by reaction with sera from individuals living in malaria-endemic areas who are thus exposed to Anopheles mosquitoes.METHODS:IgG antibodies targeting salivary gland proteins in serum samples from individuals living in malaria-endemic areas were measured by enzyme-linked immunosorbent assay (ELISA). Sera from healthy individuals living in non-endemic areas were used as negative controls. Determination of the presence of salivary gland immunogenic proteins was carried out by western blotting.RESULTS:Sixteen bands appeared in sodium dodecyl sulfate polyacrylamide gel electrophoresis, with molecule weights ranging from 22 to 144kDa. Among the exposed individuals, IgG responses to salivary gland proteins were variable. Protein bands with molecular weights of 46, 41, 33, and 31kDa were the most immunogenic. These immunogenic proteins were consistently recognized by pooled serum and individual samples from people living in malaria-endemic areas but not by negative controls.CONCLUSIONS:These results support the potential use of immunogenic proteins from the salivary glands of Anopheles as candidate markers of bite exposure or in malaria vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses have developed numerous strategies to recruit and take advantage of cellular protein degradation pathways to evade the cellular viral immune system. One such virus is the Kaposi´s Sarcoma associated herpesvirus (KSHV), first discovered in Kaposi´s Sarcoma lesions found in AIDS patients. Latency-Associated Nuclear Antigen (LANA) is a KSHV multifunctional protein responsible for tethering viral DNA to the chromosome ensuring maintenance and segregation of the viral genome during cell division. Besides its main role of viral maintenance, LANA also physically interacts with several host proteins to modulate cell functions. One such function is to recruit the EC5S ubiquitin-ligase complex by interacting with Elongin BC complex and Cullin 5 protein, which in turn ubiquitinate substrates such as NF-κB and p53 to allow persistent viral infection. Like any other post-translation modifications, ubiquitination is reversible through deubiquitination enzymes (DUBs). LANA also interacts with ubiquitin specific protease 7 (USP7), a deubiquitination enzyme involved in regulation of several proteins including p53. Interaction with USP7 is made through a conserved peptide motif, which is also present in LANA. This work addresses the role of LANA in the recruitment and modulation of the ubiquitination and deubiquitination pathways. Despite the continued efforts in uncovering new LANA interacting partners to form a functional EC5S ubiquitin-ligase complex, only MHV-68 LANA interacted directly with Elongin BC, other interactions were not direct and may require a linker protein. On the other hand, LANA interaction with USP7 was able to be analysed by X-ray structure determination. In addition to a conserved P/AxxS motif, a novel Glutamine (Gln) residue from KSHV LANA was shown to make a specific interaction with USP7. This Gln residue is also present in other herpesvirus protein and hence it might be a conserved motif within herpesviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) are one of the leading causes of death and disability worldwide and one of its underlying causes is hypercholesterolemia. Hypercholesterolemia can have genetic (familial hypercholesterolemia, FH) and non-genetic causes (clinical hypercholesterolemia, CH), the first much more severe, with occurrence of premature atherosclerosis. While the pathophysiological role of homocysteine (Hcy) on CVD is still controversial, molecular targeting of protein by S and N-homocysteinylation offers a new paradigm to be considered in the vascular pathogenesis of hypercholesterolemia. On this regard, the present study aims to give new insights on protein targeting by Hcy in both CH and FH conditions. A total of 187 subjects were included: 65 normolipidemic and 122 hypercholesterolemic. Total (tHcy) and free (fHcy) fractions were quantified in serum samples after validation of an HPLCFD method, to assess S-homocysteinylation. Also, the lactonase (LACase) activity of paraoxonase-1 (PON1) was quantified by a colorimetric assay, as a surrogate of N-homocysteinylation. tHcy does not differ among groups. Nevertheless, fHcy declines in the hypercholesterolemic groups, with more evidence to the FH population. Consequently, there seems to be an increase of Shomocysteinylation, regardless of lipid lowering therapy (LLT). Also, despite of LLT use, LACase activity is lower in FH, thus the risk for protein N-homocysteinylation seems to be higher. Moreover, the decrease in LACase/ApoA1 and LACase/HDL ratios in FH, shows that HDL is dysfunctional in this population, despite its normal concentration values. Data supports that the pathophysiological role of Hcy on hypercholesterolemia may reside in its ability to post-translationally modify proteins. This role is particularly evident in FH condition. In the future, it will be interesting to identify which target proteins are modified and thus involved in vascular pathology progression.