903 resultados para non-covalent interactions
Resumo:
During the last decade, globalisation and liberalisation of financial markets, changing societal expectations and corporate governance scandals have increased the attention for the fiduciary duties of non-executive directors. In this context, recent corporate governance reform initiatives have emphasised the control task and independence of non-executive directors. However, little attention has been paid to their impact on the external and internal service tasks of non-executive directors. Therefore, this paper investigates how the service tasks of non-executive directors have evolved in the Netherlands. Data on corporate governance at the top-100 listed companies in the Netherlands between 1997 and 2005 show that the emphasis on non-executive directors' external service task has shifted to their internal service task, i.e. from non-executive directors acting as boundary spanners to non-executive directors providing advice and counselling to executive directors. This shift in board responsibilities affects non-executive directors' ability to generate network benefits through board relationships and has implications for non-executive directors' functional requirements.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
In response to concerns about the quality of English Language Learning (ELL) education at tertiary level, the Chinese Ministry of Education (CMoE) launched the College English Reform Program (CERP) in 2004. By means of a press release (CMoE, 2005) and a guideline document titled College English Curriculum Requirements (CECR) (CMoE, 2007), the CERP proposed two major changes to the College English assessment policy, which were: (1) the shift to optional status for the compulsory external test, the College English Test Band 4 (CET4); and (2) the incorporation of formative assessment into the existing summative assessment framework. This study investigated the interactions between the College English assessment policy change, the theoretical underpinnings, and the assessment practices within two Chinese universities (one Key University and one Non-Key University). It adopted a sociocultural theoretical perspective to examine the implementation process as experienced by local actors of institutional and classroom levels. Systematic data analysis using a constant comparative method (Merriam, 1998) revealed that contextual factors and implementation issues did not lead to significant differences in the two cases. Lack of training in assessment and the sociocultural factors such as the traditional emphasis on the product of learning and hierarchical teacher/students relationship are decisive and responsible for the limited effect of the reform.
Resumo:
The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.
Resumo:
The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.
Resumo:
Australian efforts to provide orthopaedic surgeons with living, load-bearing scaffolds suitable for current joint (knee and hip) replacement surgery, non-union fracture repair, and miniscal and growth plate cartilage regeneration are being lead by teams at the Institute for Medical and Veterinary Science and Women's and Children's Hospital in Adelaide; the Peter MacCallum and St Vincent's Medical Research Institutes in Melbourne; and the Mater Medical Research Institute and new Institute for Health and Biomedical Innovation at QUT, Brisbane. In each case multidisciplinary teams are attempting to develop autologous living tissue constructs, utilising mesenchymal stem cells (MSC), with the intention of effecting seamless repair and regeneration of skeletal trauma and defects. In this article we will briefly review current knowledge of the phenotypic properties of MSC and discuss the potential therapeutic applications of these cells as exemplified by their use in cartilage repair and tissue engineering based approaches to the treatment of skeletal defects.