860 resultados para nmr spectroscopy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Iota, Kappa and Lambda commercial carrageenans are rarely pure and normally contain varying amounts of the other types of carrageenans. The exact amount of impurity depends on the seaweed source and extraction procedure. Then, different analysis methods have been applied for determination of the main constituents of carrageenans because these three carrageenans are extensively used in food, cosmetic and pharmaceutical industry. The electrophoresis of these compounds proved that the carrageenans are constituted by sulfated polysaccharides. These compounds were characterized by colorimetric methods and was observed that the Lambda carrageenan shown the greater value (33.38%) of sulfate. These polymers were examined by means of 13C NMR spectroscopy and infrared spectra. The polysaccharides consisted mainly of units alternating of sulfated galactoses and anhydrogalactoses. The aim of the study was also to test the inflammatory action of these different polysaccharides. A suitable model of inflammation is acute sterile inflammation of the rat hind limb induced by carrageenan. Paw edema was induced by injecting carrageenans (κ, ι and λ) in saline into the hind paw of a male Wistar rats (175–200 g). The pathway to acute inflammation by carrageenan (kappa, iota and lambda) were expressed as time-edema dependence and measured by paw edema volume. For this purpose, was used an apparatus (pakymeter), which makes it possible to measure the inflammation (swelling of the rat foot) with sufficient accuracy. The results showed that κ-carrageenan (1%) have an edema of 3.7 mm and the paw edema increase was time and dose dependent; the ι-carrageenan (0.2%) caused an edema of 4 mm and the λ-carrageenan (1%) caused an edema of 3.6 mm. Other model was used in this study based in the inflammation of pleura for comparatives studies. Injection of carrageenans into the pleural cavity of rat induced an acute inflammatory response characterized by fluid accumulation in the pleural cavity, a large number of neutrophils and raised NO production. The levels of NO were measured by Griess reactive. The ι-carrageenan caused the greater inflammation, because it has high concentration of nitrite/nitrate (63.478 nmoles/rat), exudato volume (1.52 ml) and PMNs (4902 x 103 cells). Quantitative evaluation of inflammations of rats is a useful and important parameter for the evaluation of the efficacy of anti-inflammatory drugs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preservation of modern and contemporary art and costume collections in museums requires a complete understanding of their constituent materials which are often synthetic or semi-synthetic polymers. An extraordinary amount of quality information can be gained from instrumental techniques, but some of them have the disadvantage of being destructive. This paper presents a new totally integrated non-invasive methodology, for the identification of polymers and their additives, on plastic artefacts in museums. NMR (nuclear magnetic resonance) and in-situ FTIR-ATR (attenuated total reflection infrared spectroscopy) combination allowed the full characterization of the structure of thesematerials and correct identification of each one. The NMR technique applied to leached surface exudates identified unequivocally a great number of additives, exceeding the Py–GC–MS analysis of micro-fragments in number and efficiency. Additionally, in-situ FTIR-ATR provided exactly the same information of the destructive μ-FTIR about the polymer structure and confirmed the presence of some additives. Eight costume pieces (cosmetic boxes and purses), dating to the beginning of the 20th century and belonging to the Portuguese National Museum of Costume and Fashion, were correctly identified with this new integrated methodology, as beingmade of plastics derived fromcellulose acetate or cellulose nitrate polymers, contradicting the initial information that these pieces were made of Bakelite. The identification of a surprisingly large number of different additives forms an added value of this methodology and opens a perspective of a quick and better characterization of plastic artefacts in museum environments.