884 resultados para neuromuscular synapse


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP has recently been identified as a fast neurotransmitter in both the central and peripheral nervous systems. Several studies have suggested that ATP can also affect the release of classical neurotransmitters, including acetylcholine with which it is co-released. We have searched for ATP receptors on a cholinergic presynaptic nerve terminal using the calyx-type synapse of the chicken ciliary ganglion. ATP was pulsed onto the terminals under voltage clamp and induced a short latency cation current that exhibited inward rectification and marked desensitization. This current was not seen with adenosine but was mimicked by several sterically restricted ATP analogs and was blocked by suramin. ATP-activated single ion channels exhibited prominent flickering and had a conductance of approximately 17 pS. Our results demonstrate a ligand-gated P2X-like purinergic receptor on a cholinergic presynaptic nerve terminal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural connections in the adult central nervous system are highly precise. In the visual system, retinal ganglion cells send their axons to target neurons in the lateral geniculate nucleus (LGN) in such a way that axons originating from the two eyes terminate in adjacent but nonoverlapping eye-specific layers. During development, however, inputs from the two eyes are intermixed, and the adult pattern emerges gradually as axons from the two eyes sort out to form the layers. Experiments indicate that the sorting-out process, even though it occurs in utero in higher mammals and always before vision, requires retinal ganglion cell signaling; blocking retinal ganglion cell action potentials with tetrodotoxin prevents the formation of the layers. These action potentials are endogenously generated by the ganglion cells, which fire spontaneously and synchronously with each other, generating "waves" of activity that travel across the retina. Calcium imaging of the retina shows that the ganglion cells undergo correlated calcium bursting to generate the waves and that amacrine cells also participate in the correlated activity patterns. Physiological recordings from LGN neurons in vitro indicate that the quasiperiodic activity generated by the retinal ganglion cells is transmitted across the synapse between ganglion cells to drive target LGN neurons. These observations suggest that (i) a neural circuit within the immature retina is responsible for generating specific spatiotemporal patterns of neural activity; (ii) spontaneous activity generated in the retina is propagated across central synapses; and (iii) even before the photoreceptors are present, nerve cell function is essential for correct wiring of the visual system during early development. Since spontaneously generated activity is known to be present elsewhere in the developing CNS, this process of activity-dependent wiring could be used throughout the nervous system to help refine early sets of neural connections into their highly precise adult patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal function is dependent on the transport of materials from the cell body to the synapse via anterograde axonal transport. Anterograde axonal transport consists of several components that differ in both rate and protein composition. In fast transport, membranous organelles are moved along microtubules by the motor protein kinesin. The cytoskeleton and the cytomatrix proteins move in the two components of slow transport. While the mechanisms underlying slow transport are unknown, it has been hypothesized that the movement of microtubules in slow transport is generated by sliding. To determine whether dynein, a motor protein that causes microtubule sliding in flagella, may play a role in slow axonal transport, we identified the transport rate components with which cytoplasmic dynein is associated in rat optic nerve. Nearly 80% of the anterogradely moving dynein was associated with slow transport, whereas only approximately 15% of the dynein was associated with the membranous organelles of anterograde fast axonal transport. A segmental analysis of the transport of dynein through contiguous regions of the optic nerve and tract showed that dynein is associated with the microfilaments and other proteins of slow component b. Dynein from this transport component has the capacity to bind microtubules in vitro. These results are consistent with the hypothesis that cytoplasmic dynein generates the movement of microtubules in slow axonal transport. A model is presented to illustrate how dynein attached to the slow component b complex of proteins is appropriately positioned to generate force of the correct polarity to slide microtubules down the axon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long CTG triplet repeats which are associated with several human hereditary neuromuscular disease genes are stabilized in ColE1-derived plasmids in Escherichia coli containing mutations in the methyl-directed mismatch repair genes (mutS, mutL, or mutH). When plasmids containing (CTG)180 were grown for about 100 generations in mutS, mutL, or mutH strains, 60-85% of the plasmids contained a full-length repeat, whereas in the parent strain only about 20% of the plasmids contained the full-length repeat. The deletions occur only in the (CTG)180 insert, not in DNA flanking the repeat. While many products of the deletions are heterogeneous in length, preferential deletion products of about 140, 100, 60, and 20 repeats were observed. We propose that the E. coli mismatch repair proteins recognize three-base loops formed during replication and then generate long single-stranded gaps where stable hairpin structures may form which can be bypassed by DNA polymerase during the resynthesis of duplex DNA. Similar studies were conducted with plasmids containing CGG repeats; no stabilization of these triplets was found in the mismatch repair mutants. Since prokaryotic and human mismatch repair proteins are similar, and since several carcinoma cell lines which are defective in mismatch repair show instability of simple DNA microsatellites, these mechanistic investigations in a bacterial cell may provide insights into the molecular basis for some human genetic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation for 60 min or longer and is termed long-term transformation. Long-term transformation is shown to contribute to pairing-induced long-term potentiation but not to long-term potentiation induced by presynaptic stimulation alone. Further support for such mechanistic divergence is provided by pharmacologic effects on long-term transformation as well as these two forms of long-term potentiation by Cl- channel blockers, glutamate and GABA antagonists, as well as the endogenous cannabinoid ligand anandamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous synaptic proteins, including several integral membrane proteins, have been assigned roles in synaptic vesicle fusion with or retrieval from the presynaptic plasma membrane. In contrast, the synapsins, neuron-specific phosphoproteins associated with the cytoplasmic surface of synaptic vesicles, appear to play a much broader role, being involved in the regulation of neurotransmitter release and in the organization of the nerve terminal. Here we have administered antisense synapsin II oligonucleotides to dissociated hippocampal neurons, either before the onset of synaptogenesis or 1 week after the onset of synaptogenesis. In both cases, synapsin II was no longer detectable within 24-48 h of treatment. After 5 days of treatment, cultures were analyzed for the presence of synapses by synapsin I and synaptophysin antibody labeling and by electron microscopy. Cultures in which synapsin II was suppressed after axon elongation, but before synapse formation, did not develop synapses. Cultures in which synapsin II was suppressed after the development of synapses lost most of their synapses. Remarkably, with the removal of the antisense oligonucleotides, neurons and their synaptic connections recovered. These studies lead us to conclude that synapsin II is involved in the formation and maintenance of synapses in hippocampal neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and that a specific neuronal isoform of type I regulatory subunit (RI beta) is essential. Mice carrying a null mutation in the gene encoding RI beta were established by use of gene targeting in embryonic stem cells. Hippocampal slices from mutant mice show a severe deficit in LTD and depotentiation at the Schaffer collateral-CA1 synapse. This defect is also evident at the lateral perforant path-dentate granule cell synapse in RI beta mutant mice. Despite a compensatory increase in the related RI alpha protein and a lack of detectable changes in total PKA activity, the hippocampal function in these mice is not rescued, suggesting a unique role for RI beta. Since the late phase of CA1 LTP also requires PKA but is normal in RI beta mutant mice, our data further suggest that different forms of synaptic plasticity are likely to employ different combinations of regulatory and catalytic subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trans-synaptic activation of gene expression is linked to long-term plastic adaptations in the nervous system. To examine the molecular program induced by synaptic activity, we have employed molecular cloning techniques to identify an immediate early gene that is rapidly induced in the brain. We here report the entire nucleotide sequence of the cDNA, which encodes an open reading frame of 396 amino acids. Within the hippocampus, constitutive expression was low. Basal levels of expression in the cortex were high but can be markedly reduced by blockade of N-methyl-D-aspartate receptors. By contrast, synaptic activity induced by convulsive seizures increased mRNA levels in neurons of the cortex and hippocampus. High-frequency stimulation of the perforant path resulted in long-term potentiation and a spatially confined dramatic increase in the level of mRNA in the granule cells of the ipsilateral dentate gyrus. Transcripts were localized to the soma and to the dendrites of the granule cells. The dendritic localization of the transcripts offers the potential for local synthesis of the protein at activated postsynaptic sites and may underlie synapse-specific modifications during long-term plastic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been proposed that the depolarizing responses of chromaticity horizontal cells (C-HCs) to red light depend on a feedback signal from luminosity horizontal cells (L-HCs) to short-wavelength-sensitive cones in the retinas of lower vertebrates. In this regard we studied the C-HCs of the Xenopus retina. C-HCs and L-HCs were identified by physiological criteria and then injected with neurobiotin. The retina then was incubated with peanut agglutinin, which stains red-but not blue-sensitive cones. Electron microscopic examination revealed that L-HCs contact all cone classes, whereas C-HCs contact only blue-sensitive cones. Simultaneous recordings from C-HC/L-HC pairs established that when the L-HC was saturated by a steady bright red light, C-HCs alone responded to a superimposed blue stimulus. In response to red test flashes, the C-HC response was delayed by approximately 30 msec with respect to the L-HC response. Isolated HCs of both subtypes were examined by whole-cell patch clamp. Both responded to kainate with sustained inward currents and to quisqualate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) with desensitizing currents from a negative holding potential; i.e., both have AMPA-type glutamate receptors. gamma-Aminobutyric acid or glycine opened a chloride channel in the L-HC, whereas the C-HC was unresponsive to either inhibitory amino acid. Since glycine has been shown to abolish selectively the depolarizing response of the C-HC, this finding and other pharmacological data strongly implicate the L-HC in the underlying circuit. Moreover, because the C-HC does not respond to gamma-aminobutyric acid, the neurotransmitter of the L-HC, by elimination, a feedback synapse from L-HC to blue cone is the most plausible mechanism for the creation of depolarizing responses in C-HCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is frequently associated with gastrointestinal (GI) symptoms, mostly represented by abdominal distension, constipation and defecatory dysfunctions. Despite GI dysfunctions have a major impact on the clinical picture of PD, there is currently a lack of information on the neurochemical, pathological and functional correlates of GI dysmotility associated with PD. Moreover, there is a need of effective and safe pharmacological therapies for managing GI disturbances in PD patients. The present research project has been undertaken to investigate the relationships between PD and related GI dysfunctions by means of investigations in an animal model of PD induced by intranigral injection of 6-hydroxydopamine (6-OHDA). The use of the 6-OHDA experimental model of PD in the present program has allowed to pursue the following goals: 1) to examine the impact of central dopaminergic denervation on colonic excitatory cholinergic and tachykininergic neuromotility by means of molecular, histomorphologic and functional approaches; 2) to elucidate the role of gut inflammation in the onset and progression of colonic dysmotility associated with PD, characterizing the degree of inflammation and oxidative damage in colonic tissues, as well as identifying the immune cells involved in the production of pro-inflammatory cytokines in the gut; 3) to evaluate the impact of chronic treatment with L-DOPA plus benserazide on colonic neuromuscular activity both in control and PD animals. The results suggest that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory cholinergic neurotransmission and an enhanced tachykininergic control, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate. These motor alterations might result from the occurrence of a condition of gut inflammation associated with central intranigral denervation. The treatment with L-DOPA/BE following central dopaminergic neurodegeneration can restore colonic motility, likely through a normalization of the cholinergic enteric neurotransmission, and it can also improve the colonic inflammation associated with central dopaminergic denervation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distrofia muscular de Duchenne é uma desordem neuromuscular causada pela mutação ou deleção do gene da distrofina, a qual é ligada ao cromossomo X. Estudos recentes têm demonstrado o importante papel da distrofina no SNC, sendo sua deficiência relacionada com uma variedade de anormalidades na função do SNC, como comportamento e disfunção cognitiva. Os modelos animais mais adequados para esses estudos são os que apresentam o quadro clinico mais semelhante ao da DMD encontrada em humanos, como cães Golden Retriever com distrofia muscular (GRMD). Por não haver ainda estudos a respeito do SNC de animais GRMD, o objetivo deste trabalho foi analisar a morfologia do encéfalo dos GRMD e o de animais não distróficos, através de análise macroscópica, utilizando métodos de medição e registro fotográfico, e análise microscópica, utilizando a técnica de coloração de violeta cresil modificada. Entretanto, usando a metodologia proposta, não foi possível verificar diferenças significativas no encéfalo quando comparados os animais distróficos e os não distróficos, o que está em concordância com a literatura para a DMD usando os mesmos parâmetros. Em tempo, existe uma variação individual na morfologia do encéfalo do cão, independente de serem animais do grupo de distróficos ou controles. Outras técnicas devem ser aplicadas a fim de elucidar as consequências da ausência total ou parcial da distrofina no SNC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Avaliar a responsividade da escala de avaliação funcional para pacientes com distrofia muscular de Duchenne (FES-DMD-D4), sentar e levantar do solo, no período de um ano. MÉTODO: Estudo observacional, longitudinal e retrospectivo. Foi estudada, utilizando o software FES-DMDDATA, uma amostra com 25 pacientes na atividade sentar no solo e 28 pacientes para a atividade levantar do solo. As avaliações ocorreram a cada três meses no período de um ano. Para análise estatística da capacidade de resposta foram utilizados índices de tamanho de efeito, como, effect size (ES) e Standardized Response Mean (SRM). RESULTADOS: A responsividade da atividade de sentar no solo foi considerada baixa a moderada em intervalos de três meses (ES de 0.28 a 0.54 e SRM de 0.38 a 0.71), moderada a alta em intervalos de seis meses (ES de 0.69 a 1.07 e SRM de 0.86 a 1.19), alta em intervalos de nove meses (ES de 1.3 a 1.17 e SRM de 1.26 a 1.55) e doze meses (ES de 1.9 e SRM de 1.72). Na atividade levantar do solo, a responsividade variou em baixa, moderada e alta em intervalos de três meses (ES de 0.21 a 0.33 e SRM de 0.45 a 0.83), baixa a alta em intervalos de seis meses (ES de 0.46 a 0.59 e SRM de 0.73 a 0.97), moderada a alta em intervalos de nove meses (ES de 0.76 a 0.88 e SRM de 1.03 a 1.22) e alta em doze meses (ES de 1.14 e SRM de 1.25). CONCLUSÃO: Para detectar alterações clinicamente significativas e consistentes nas atividades funcionais sentar e levantar do solo recomendamos a utilização da FES-DMD-D4 em intervalos a partir de seis meses, pois foi neste período de tempo que a capacidade de resposta variou de moderada a alta

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: Determinar a responsividade do domínio subir e descer escada da escala de avaliação funcional em distrofia muscular de Duchenne (DMD), no período de um ano. Método: Participaram do estudo 26 pacientes com DMD. A análise utilizou o Tamanho do Efeito (ES) e a Média Padronizada de Resposta (SRM). Resultados: Atividade de subir escada: o ES mostrou responsividade baixa nos intervalos de avaliação de 3 meses (0,26; 0,35; 0,13; 0,17), baixa a moderada em 6 meses (0,58, 0,48; 0,33), moderada em 9 meses (0,70; 0,68) e alta em 1 ano (0,88). A análise com SRM mostrou responsividade baixa nos intervalos de avaliação de 3 meses (0,29; 0,38; 0,18 e 0,19), baixa a moderada em intervalos de 6 meses (0,59 e 0,51, 0,36), moderada em 9 meses (0,74 e 0,70) e alta em 1 ano (0,89). Atividade de descer escada: O ES apresentou responsividade baixa nos intervalos de avaliação de 3 meses (0,16; 0,25; 0,09; 0,08) e 6 meses (0,48; 0,35; 0,18), baixa a moderada em 9 meses (0,59, 0,44) e moderada em 1 ano (0,71). Análise com SRM mostrou responsividade baixa nos intervalos de 3 meses (0,25; 0,35; 0,12 e 0,09) e 6 meses (0,47; 0,38 e 0,21), moderada a baixa em 9 meses (0,62, 0,49) e moderada em 1 ano (0,74). Conclusão: A avaliação da atividade de subir escada, por meio da FES-DMD-D3, deve ser realizada em intervalos a partir de 9 meses, pois a responsividade é de moderada a alta. A avaliação do descer escadas deve ser realizada anualmente, pois houve responsividade moderada somente a partir de 12 meses