937 resultados para myoepithelial tumors
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.
Resumo:
CD33 is a member of the sialic acid–binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to -CD33 therapy.
Resumo:
Previous studies have identified the DUB family of cytokine-regulated murine deubiquitinating enzymes, which play a role in the control of cell proliferation and survival. Through data base analyses and cloning, we have identified a human cDNA (DUB-3) that shows significant homology to the known murine DUB family members. Northern blotting has shown expression of this gene in a number of tissues including brain, liver, and muscle, with two transcripts being apparent (1.6 and 1.7 kb). In addition, expression was observed in cell lines including those derived from a number of hematopoietic tumors such as the Burkitt's lymphoma cell line RAJI. We have also demonstrated that DUB-3, which was shown to be an active deubiquitinating enzyme, is induced in response to interleukin-4 and interleukin-6 stimulation. Finally, we have demonstrated that constitutive expression of DUB-3 blocks proliferation and can initiate apoptosis in both IL-3-dependent Ba/F3 cells and NIH3T3 fibroblasts. These findings suggest that human DUB-3, like the murine DUB family members, is transiently induced in response to cytokines and can, when constitutively expressed, block growth factor-dependent proliferation.
Resumo:
We investigated the role of p53 and the signal transducer and activator of transcription 1 (STAT1) in regulating Fas-mediated apoptosis in response to chemotherapies used to treat colorectal cancer. We found that 5-fluorouracil (5-FU) and oxaliplatin only sensitized p53 wild-type (WT) colorectal cancer cell lines to Fas-mediated apoptosis. In contrast, irinotecan (CPT-11) and tomudex sensitized p53 WT, mutant, and null cells to Fas-mediated cell death. Furthermore, CPT-11 and tomudex, but not 5-FU or oxaliplatin, up-regulated Fas cell surface expression in a p53-independent manner. In addition, increased Fas cell surface expression in p53 mutant and null cell lines in response to CPT-11 and tomudex was accompanied by only a slight increase in total Fas mRNA and protein expression, suggesting that these agents trigger p53-independent trafficking of Fas to the plasma membrane. Treatment with CPT-11 or tomudex induced STAT1 phosphorylation (Ser727) in the p53-null HCT116 cell line but not the p53 WT cell line. Furthermore, STAT1-targeted small interfering RNA (siRNA) inhibited up-regulation of Fas cell surface expression in response to CPT-11 and tomudex in these cells. However, we found no evidence of altered Fas gene expression following siRNA-mediated down-regulation of STAT1 in drug-treated cells. This suggests that STAT1 regulates expression of gene(s) involved in cell surface trafficking of Fas in response to CPT-11 or tomudex. We conclude that CPT-11 and tomudex may be more effective than 5-FU and oxaliplatin in the treatment of p53 mutant colorectal cancer tumors by sensitizing them to Fas-mediated apoptosis in a STAT1-dependent manner.
Resumo:
Abstract The prostanoid biosynthetic enzyme cyclooxygenase-2 (Cox-2) is upregulated in several neuroendocrine tumors. The aim of the current study was to employ a neuroendocrine cell (PC12) model of Cox-2 over-expression to identify gene products that might be implicated in the oncogenic and/or inflammatory actions of this enzyme in the setting of neuroendocrine neoplasia. Expression array and real-time PCR analysis demonstrated that levels of the neuroendocrine marker chromogranin A (CGA) were 2-fold and 3.2-fold higher, respectively, in Cox-2 over-expressing cells (PCXII) vs their control (PCMT) counterparts. Immunocytochemical and immunoblotting analyses confirmed that both intracellular and secreted levels of CGA were elevated in response to Cox-2 induction. Moreover, exogenous addition of prostaglandin E2 (1uÃ?ÂM), mimicked this effect in PCMT cells, while treatment of PCXII cells with the Cox-2 selective inhibitor NS-398 (100 nM) reduced CGA expression levels, thereby confirming the biospecificity of this finding. Levels of neurone specific enolase (NSE) were similar in the two cell lines, suggesting that the effect of Cox-2 on CGA expression was specific and not due to a global enhancement of neuroendocrine marker expression/differentiation. Cox-2-dependent CGA upregulation was associated with significantly increased chromaffin granule number and intracellular and secreted levels of dopamine. CGA promoter-driven reporter gene expression studies provided evidence that prostaglandin E2-dependent upregulation required a proximal cAMP-responsive element (CRE; -71 - -64 bp). This study is the first to demonstrate that Cox-2 upregulates both CGA expression and bioactivity in a neuroendocrine cell line and has major implications for the role of this polypeptide in the pathogenesis of neuroendocrine cancers in which Cox-2 is upregulated.
Resumo:
Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-kappaB (NF-kappaB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-kappaB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.
Resumo:
Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.
Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.
Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).
Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.
Resumo:
We investigated whether BRCA1 mRNA expression levels may represent a biomarker of survival in sporadic epithelial ovarian cancer following chemotherapy treatment. EXPERIMENTAL DESIGN: The effect of loss of BRCA1 expression on chemotherapy response in ovarian cancer was measured in vitro using dose inhibition assays and Annexin V flow cytometry. Univariate and multivariate analyses were done to evaluate the relationship between BRCA1 mRNA expression levels and survival after chemotherapy treatment in 70 fresh frozen ovarian tumors. RESULTS: We show that inhibition of endogenous BRCA1 expression in ovarian cancer cell lines results in increased sensitivity to platinum therapy and decreased sensitivity to antimicrotubule agents. In addition, we show that patients with low/intermediate levels of BRCA1 mRNA have a significantly improved overall survival following treatment with platinum-based chemotherapy in comparison with patients with high levels of BRCA1 mRNA (57.2 versus 18.2 months; P = 0.0017; hazard ratio, 2.9). Furthermore, overall median survival for higher-BRCA1-expressing patients was found to increase following taxane-containing chemotherapy (23.0 versus 18.2 months; P = 0.12; hazard ratio, 0.53). CONCLUSIONS: We provide evidence to support a role for BRCA1 mRNA expression as a predictive marker of survival in sporadic epithelial ovarian cancer.
Resumo:
Immunohistochemical studies on formalin-fixed, paraffin-embedded (FFPE) tissue utilizing polyclonal antibodies form the cornerstone of many reports claiming to demonstrate erythropoietin receptor (EPOR) expression in malignant tissue. Recently, Elliott et al. (Blood 2006;107:1892-1895) reported that the antibodies commonly used to detect EPOR expression also detect non-EPOR proteins, and that their binding to EPOR was severely abrogated by two synthetic peptides based on the sequence of heat shock protein (HSP) 70, HSP70-2, and HSP70-5. We have investigated the specificity of the C20 antibody for detecting EPOR expression in non-small cell lung carcinoma (NSCLC) utilizing tissue microarrays. A total of 34 cases were available for study. Antibody absorbed with peptide resulted in marked suppression of cytoplasmic staining compared with nonabsorbed antibody. Four tumors that initially showed a membranous pattern of staining retained this pattern with absorbed antibody. Positive membranous immunoreactivity was also observed in 6 of 30 tumors that originally showed a predominantly cytoplasmic pattern of staining. Using the C20 antibody for Western blots, we detected three main bands, at 100, 66, and 59 kDa. Preincubation with either peptide caused abolition of the 66-kDa band, which contains non-EPOR sequences including heat shock peptides. These results call into question the significance of previous immunohistochemical studies of EPOR expression in malignancy and emphasize the need for more specific anti-EPOR antibodies to define the true extent of EPOR expression in neoplastic tissue
Resumo:
A role for Langerhans cells (LC) in the induction of immune responses in the skin has yet to be conclusively demonstrated. We used skin immunization with OVA protein to induce immune responses against OVA-expressing melanoma cells. Mice injected with OVA-specific CD8(+) T cells and immunized with OVA onto barrier-disrupted skin had increased numbers of CD8(+) T cells in the blood that produced IFN-gamma and killed target cells. These mice generated accelerated cytotoxic responses after secondary immunization with OVA. Prophylactic or therapeutic immunization with OVA onto barrier-disrupted skin inhibited the growth of B16.OVA tumors. LC played a critical role in the immunization process because depletion of LC at the time of skin immunization dramatically reduced the tumor-protective effect. The topically applied Ag was presented by skin-derived LC in draining lymph nodes to CD8(+) T cells. Thus, targeting of tumor Ags to LC in vivo is an effective strategy for tumor immunotherapy.
Resumo:
Cytochrome P450 1B1 (CYP1B1) mRNA is constitutively expressed in most normal extra-hepatic tissues; however the protein is not detectable in these tissues but is expressed in a wide variety of tumors. CYP1B1 is responsible for the activation of a number of carcinogens present in tobacco smoke and food. A surgical model of rat esophageal tumorigenesis, promoted by gastric or duodenal reflux was used to determine CYP1B1 expression in premalignant esophageal tissue. Immunohistochemistry was performed using a modified amplified fluorescein tyramide protocol. CYP1B1 was not observed in normal esophageal mucosa, submucosa, or muscularis mucosa. Animals exposed to gastric reflux developed mild hyperplasia. Varying degrees of hyperplasia were observed in the duodenal reflux group. All regions of hyperplasia showed moderate or strong CYP1B1 immunoreactivity. Duodenal reflux induced a small number of premalignant changes: immunoreactivity was absent from the epithelium of squamous dysplasia (0/10), Barrett's esophagus (0/7), and majority of dysplastic Barrett's esophagus (1/4). Moderate or strong immunoreactivity was observed in the majority (7/8) of squamous cell carcinomas (SCCs) in situ. Immunoreactivity was also observed in the lamina propria and submucosa in association with inflammation, regardless of the severity of inflammation. The expression of CYP1B1 in hyperplasia, SCCs in situ, or in association with inflammation may increase the production of carcinogenic metabolites, which may promote esophageal tumorigenesis.
Resumo:
Purpose: A number of cytotoxic chemotherapy agents tested at low concentrations show antiangiogenic properties with limited cytotoxicity, e.g., cyclophosphamide, tirapazamine, and mitoxantrone. AQ4N is a bioreductive alkylaminoanthraquinone that is cytotoxic when reduced to AQ4; hence, it can be used to target hypoxic tumor cells. AQ4N is structurally similar to mitoxantrone and was evaluated for antiangiogenic properties without the need for bioreduction.
Experimental Design:The effect of AQ4N and fumagillin on human microvascular endothelial cells (HMEC-1) was measured using a variety ofin vitro assays, i.e., 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide, wound scrape, tubule formation, rat aortic ring, and invasion assays. Low-dose AQ4N (20 mg/kg) was also given in vivo to mice bearing a tumor in a dorsal skin flap.
Results:AQ4N (10-11to10-5mol/L) hadno effect on HMEC-1viability. AQ4N (10-9to10-5mol/L) caused a sigmoidal dose-dependent inhibition of endothelial cell migration in the wound scrape model. Fumagillin showed a similar response over a lower dose range (10-13 to 10-9 mol/L); however, the maximal inhibition was less (25% versus 43% for AQ4N). AQ4N inhibited HMEC-1 cell contacts on Matrigel (10-8 to 10-5 mol/L), HMEC-1 cell invasion, and sprouting in rat aorta explants. Immunofluorescence staining with tubulin, vimentim, dynein, and phalloidin revealed that AQ4N caused disruption to the cell cytoskeleton. When AQ4N (20 mg/kg) was given in vivo for 5 days, microvessels disappeared in LNCaP tumors grown in a dorsal skin flap.
Conclusions:This combination of assays has shown that AQ4N possesses antiangiogenic effects in normoxic conditions, which could potentially contribute to antitumor activity
Resumo:
Multidrug resistance (NIDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with NIDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2AS(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]
Resumo:
Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.