973 resultados para molecule imprinting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomula of Schistosoma mansoni became resistant to antibody-dependent complement damage in vitro after pre-incubation with normal human erythrocytes (NHuE) whatever the ABO or Rh blood group. Resistant parasites were shown to acquire host decay accelerating factor (DAF) , a 70 kDa glycoprotein attached to the membrane of NHue by a GPI anchor. IgG2a mAb anti-human DAF (IA10) immunoprecipitated a 70 kDa molecule from 125I-labeled schistosomula pre-incubated with NHuE and inhibited their resistance to complement-dependent killing in vtro. Incubationof schistosomula with erytrocytes from patients with paroxsimal nocturnal hemoglobinuria (PNHE) or SRBC, wich are DAF-deficient, did not protect the parasites from complement lesion. Supernatant of 100,000 x g collected from NHuE incubated for 24 h in defined medium was shown to contain a soluble form of DAF and to protect schistosomula from complement killing. Schistosomula treated with trypsin before incubation with NHuE ghosts did not become resistant to complement damage. On the other hand, pre-treatment with chymotrypsin did not interfere with the acquisition of resistance by the schistosomula. These results indicate that, in vitro, NHuE DAF can be transferred to schistosomula in a soluble form and that the binding of this molecule to the parasite surface is dependent upon trypsin-sensitive chymotrypsin-insensitive polipeptide(s) present on the surface of the worm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemorrhagic fevers caused by arenaviruses are among the most devastating emerging human diseases. Considering the number of individuals affected, the current lack of a licensed vaccine, and the limited therapeutic options, arenaviruses are arguably among the most neglected tropical pathogens and the development of efficacious anti-arenaviral drugs is of high priority. Over the past years significant efforts have been undertaken to identify novel potent inhibitors of arenavirus infection. High throughput screening of small molecule libraries employing pseudotype platforms led to the discovery of several potent and broadly active inhibitors of arenavirus cell entry that are effective against the major hemorrhagic arenaviruses. Mechanistic studies revealed that these novel entry inhibitors block arenavirus membrane fusion and provided novel insights into the unusual mechanism of this process. The success of these approaches highlights the power of small molecule screens in antiviral drug discovery and establishes arenavirus membrane fusion as a robust drug target. These broad screenings have been complemented by strategies targeting cellular factors involved in productive arenavirus infection. Approaches targeting the cellular protease implicated in maturation of the fusion-active viral envelope glycoprotein identified the proteolytic processing of the arenavirus glycoprotein precursor as a novel and promising target for anti-arenaviral strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythrokeratodermia variabilis (EKV) is an autosomal dominant keratinization disorder characterized by migratory erythematous lesions and fixed keratotic plaques. All families with EKV show mapping to chromosome 1p34-p35, and mutations in the gene for connexin 31 (Cx31) have been reported in some but not all families. We studied eight affected and three healthy subjects in an Israeli family, of Kurdish origin, with EKV. After having mapped the disorder to chromosome 1p34-p35, we found no mutations in the genes for Cx31, Cx31.1, and Cx37. Further investigation revealed a heterozygous T-->C transition leading to the missense mutation (F137L) in the human gene for Cx30.3 that colocalizes on chromosome 1p34-p35. This nucleotide change cosegregated with the disease and was not found in 200 alleles from normal individuals. This mutation concerns a highly conserved phenylalanine, in the third transmembrane region of the Cx30.3 molecule, known to be implicated in the wall formation of the gap-junction pore. Our results show that mutations in the gene for Cx30.3 can be causally involved in EKV and point to genetic heterogeneity of this disorder. Furthermore, we suggest that our family presents a new type of EKV because of the hitherto unreported association with erythema gyratum repens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A preliminary baseline epidemiological malaria survey was conducted in the village of Punta Soldado, Colombia. Parasite prevalence and density as well as serological data were obtained from 151 asymptomatic children and adults. Fifty individuals were infected with Plasmodium falciparum. The mean parasite density was 184 parasites/mm3. Greater than 90 of the sample population were P. falciparum antibody positive as detected by the indirect immunofluorescent antibody test (IFAT). The enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against the major merozoite surface protein (MSP-1) of P. falciparum. In this population, anti-MSP-1 antibody concentration is acquired in an age dependent manner with equal immunogenicity to both the N- and C-terminal regions of the molecule. Infection at the time of sampling was associated with a higher anti-MSP-1 antibody concentration than that found in non-infected individuals. Further studies are planned to assess the role of immune and non-immune factors in limiting the number of cases of severe malaria seen in this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The apical membrane antigen (AMA-1) family of malaria merozoite proteins is characterised by a high degree of inter-species conservation. Evidence that the protein (PK66/AMA-1) from the simian parasite Plasmodium knowlesi was protective in rhesus monkeys suggested that the 83kDa P. falciparum equivalent (PF83/AMA-1) should be investigated for protective effects in humans. Here we briefly review pertinent comparative data, and describe the use of an eukaryotic full length recombinant PF83/AMA-1 molecule to develop a sensitive ELISA for the determination of serological responses in endemic populations. The assay has revealed surprisingly high levels of humoral response to this quantitatively minor antigen. We also show that PK66/AMA-1 inhibitory mAb's are active against merozoites subsequent to release from schizont-infected red cells, further implicating AMA-1 molecules in red cell invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative determinations of agglutination of hemocytes from oysters, Crassostrea virginica, by the Lathyrus odoratus lectin at five concentrations revealed that clumping of hemocytes from oysters infected with Perkinsus marinus is partially inhibited. Although the nature of the hemocyte surface saccharide, which is not D(+)-glucose, D(+)mannose, or alpha-methyl-D-mannoside, remains to be determined, it may be concluded that this molecule also occurs on the surface of P. marinus. It has been demonstrated that the panning technique (Ford et al. 1990) is qualitatively as effective for determining the presence of P. marinus in C. virginica as the hemolymph assay method (Gauthier & Fisher 1990).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Static incubation tests, where microcapsules and beads are contacted with polymer and protein solutions, have been developed for the characterization of permselective materials applied for bioartificial organs and drug delivery. A combination of polymer ingress, detected by size-exclusion chromatography, and protein ingress/ egress, assessed by gel electrophoresis, provides information regarding the diffusion kinetics, molar mass cutoff(MMCO) and permeability. This represents an improvement over existing permeability measurements that are based on the diffusion of a single type of solute. Specifically, the permeability of capsules based on alginate, cellulose sulfate, polymethylene-co-guanidine were characterized as a function of membrane thickness. Solid alginate beads were also evaluated. The MMCO of these capsules was estimated to be between 80 and 90 kDa using polymers, and between 116-150 kDa with proteins. Apparently, the globular shape of the proteins (radius of gyration (Rg) of 4.2-4.6 nm) facilitates their passage through the membrane, comparatively to the polysaccharide coil conformation (Rg of 6.5-8.3 nm). An increase of the capsule membrane thickness reduced these values. The MMCO of the beads, which do not have a membrane limiting their permselective properties, was higher, between 110 and 200 kDa with dextrans, and between 150 and 220 kDa with proteins. Therefore, although the permeability estimated with biologically relevant molecules is generally higher due to their lower radius of gyration, both the MMCO of synthetic and natural watersoluble polymers correlate well, and can be used as in vitro metrics for the immune protection ability of microcapsules and microbeads. This article shows, to the authors' knowledge, the first reported concordance between permeability measures based on model natural and biological macromolecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the first steps of reverse transcription of the retroviral genome, sequences present at the extremities of the RNA are used to reconstitute a host cell PolII promoter. The assembly of the promoter occurs by template switching, which takes advantage of a direct repeat at the ends of the RNA molecule. These steps are catalysed by the viral reverse transcriptase, which carries an intrinsic RNaseH activity that is probably also involved therein. To study the role of the RNaseH activity in this first template-switching event, an in vitro system has been developed based on primer extensions of synthetic RNAs. When an RNA was reverse transcribed with wild-type reverse transcriptase in the presence of a second RNA the 3' part of which was repeated at the 5' end of the first one, extension products could be observed corresponding to a chimeric cDNA comprising both RNA species. This template switching could not be detected when a mutant reverse transcriptase lacking the RNaseH activity was used. The results show that the RNaseH activity is needed to remove the 5' RNA sequences from the cDNA:RNA hybrid thereby enabling its translocation to another RNA containing an appropriate complementary target sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the use of laser-induced fluorescence confocal spectroscopy to measure analyte-stimulated enhanced green fluorescent protein (egfp) synthesis by genetically modified Escherichia coli bioreporter cells. Induction is measured in cell lysates and, since the spectroscopic focal volume is approximately the size of one bioreporter cell, also in individual live bacteria. This is, to our knowledge, the first ever proof-of-concept work utilizing instrumentation with single-molecule detection capability to monitor bioreporter response. Although we use arsenic inducible bioreporters here, the method is extensible to gfp/egfp bioreporters that are responsive to other substances.