992 resultados para modulation bandwidth
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
Ziel dieser Dissertation ist es, eine Klasse interferometrischer Messgeräte zu charakterisieren und weiter zu entwickeln. Die Modulation der optischen Weglänge (OPLM) im Referenzarm eines interferometrischen Messsystems ist ein anpassungsfähiger Ansatz. Sie ist zur Messung von Oberflächenprofilen mit einer Auflösung bis in den sub-nm-Bereich bei einem Messbereich von bis zu 100 Mikrometer geeignet. Wird ein statisches Messobjekt gemessen, tritt durch die Modulation im Referenzarm am Detektor ein periodisches Interferenzmuster auf. Dies ist in der unten stehenden Abbildung schematisch dargestellt. Bei einer Veränderung des Abstandes zwischen Objekt und Messgerät kann aus der Phasen- und/oder Hüllkurvenverschiebung im Interferenzmuster die Abstandsänderung abgeleitet werden.Im Rahmen der Arbeit sind zwei funktionsfähige OPLM-Messsysteme entwickelt, aufgebaut und getestet worden. Diese demonstrieren, dass der OPLM-Ansatz ein breites Spektrum an Anwendungen durch eine optische Messung abdecken kann. Allerdings zeigen sich an den Messsystemen auch die Limitierungen des OPLM-Ansatzes. Die Systeme basieren auf einer Punktmessung mittels einer fasergekoppelten Sonde sowie auf einer linienförmigen Messung durch eine Zeilenkamera. Um eine hohe laterale Auflösung zu erzielen, wird die Zeilenkamera mit einem Mikroskop kombiniert. Damit flächenhaft gemessen werden kann, ist es notwendig, Messobjekt und Sensor zueinander zu verschieben. Daher wird eine Theorie entwickelt, unter welchen Randbedingungen bewegte Objekte von einem OPLM-Messsystem aufgelöst werden können. Die Theorie wird anschließend experimentell überprüft und bestätigt. Für die Auswertung der bei der Modulation der optischen Weglänge entstehenden Interferenzen existieren bereits einige erprobte Algorithmen, welche auf ihre Eignung hin untersucht und mit selbst entwickelten Algorithmen verglichen werden. Auch wird darauf eingegangen, welches die zentralen Herausforderungen bei der Planung von OPLM-Interferometern sind und wie sich insbesondere die Wahl des Aktors für die OPLM auf das gesamte Messsystem auswirkt. Bei den beiden Messsystemen werden jeweils wichtige Komponenten wie analoge Elektronik und Aktorik sowie ihre Funktionsweise erläutert. Es wird detailliert beschrieben, wie ein OPLM-Messsystem charakterisiert und kalibriert werden muss, um möglichst zuverlässige Messwerte zu liefern. Abschließend werden die Möglichkeiten der beiden entwickelten Systeme durch Beispielmessungen demonstriert, sowie ihre Messgenauigkeit charakterisiert.
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
The purpose of resource management is the efficient and effective use of network resources, for instance bandwidth. In this article, a connection oriented network scenario is considered, where a certain amount of bandwidth is reserved for each label switch path (LSP), which is a logical path, in a MPLS or GMPLS environment. Assuming there is also some kind of admission control (explicit or implicit), these environments typically provide quality of service (QoS) guarantees. It could happen that some LSPs become busy, thus rejecting connections, while other LSPs may be under-utilised. We propose a distributed lightweight monitoring technique, based on threshold values, the objective of which is to detect congestion when it occurs in an LSP and activate the corresponding alarm which will trigger a dynamic bandwidth reallocation mechanism
Resumo:
We present a system for dynamic network resource configuration in environments with bandwidth reservation and path restoration mechanisms. Our focus is on the dynamic bandwidth management results, although the main goal of the system is the integration of the different mechanisms that manage the reserved paths (bandwidth, restoration, and spare capacity planning). The objective is to avoid conflicts between these mechanisms. The system is able to dynamically manage a logical network such as a virtual path network in ATM or a label switch path network in MPLS. This system has been designed to be modular in the sense that in can be activated or deactivated, and it can be applied only in a sub-network. The system design and implementation is based on a multi-agent system (MAS). We also included details of its architecture and implementation
Resumo:
Notes on AM, DSBSC, QAM, BPSK, 4QAM, 8PSK, 16QAM
Resumo:
Considers Sampling, Pulse Amplitude Modulation, Multiple Access, Quantisation, Pulse Coded Modulation, Manchester Line Coding, Amplitude Modulation, Double SideBand Suppressed Carrier Modulation, Quadrature Amplitude Modulation and M-ary Shift Keying.
Resumo:
This paper examines the effect of amplification bandwidth on speech intelligibility using multiple speech samples.
Resumo:
The purpose of this study was to examine objective and subjective distortion present when frequency modulation (FM) systems were coupled with four digital signal processing (DSP) hearing aids. Electroacoustic analysis and subjective listening tests by experienced audiologists revealed that distortion levels varied across hearing aids and channels.
Resumo:
This paper was a study to examine the effect of bandlimiting on speech intelligibility.
Resumo:
This dissertation examined whether a hearing impairment of the auditory end-organ has the same or a differential effect on the place and periodicity processes. Differential sensitivities for four normally hearing listeners and for both ears of five patients with unilateral Meniere’s disease were measured for tonal frequency and rate of sinusoidally amplitude-modulated noise at common frequencies and rates of the stimulus.
Resumo:
The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.
Resumo:
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.