966 resultados para microwave oscillation
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
Resumo:
Several studies have suggested that differences in the natural rooting ability of plant cuttings could be attributed to differences in endogenous auxin levels. Hence, during rooting experiments, it is important to be able to routinely monitor the evolution of endogenous levels of plant hormones. This work reports the development of a new method for the quantification of free auxins in auxin-treated Olea europaea (L.) explants, using dispersive liquid–liquid microextraction (DLLME) and microwave assisted derivatization (MAD) followed by gas chromatography/mass spectrometry (GC/MS) analysis. Linear ranges of 0.5–500 ng mL 1 and 1–500 mg mL 1 were used for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), respectively. Determined by serial dilutions, the limits of detection (LOD) and quantification (LOQ) were 0.05 ng mL 1 and 0.25 ng mL 1, respectively for both compounds. When using the calibration curve for determination, the LOQ corresponded to 0.5 ng mL 1 (IAA) and 0.5 mg mL 1 (IBA). The proposed method proved to be substantially faster than other alternatives, and allowed free auxin quantification in real samples of semi-hardwood cuttings and microshoots of two olive cultivars. The concentrations found in the analyzed samples are in the range of 0.131–0.342 mg g 1 (IAA) and 20–264 mg g 1 (IBA).
Resumo:
2008
Resumo:
Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.
Resumo:
In this Thesis we focus on non-standard signatures from CMB polarisation, which might hint at the existence of new phenomena beyond the standard models for Cosmology and Particle physics. With the Planck ESA mission, CMB temperature anisotropies have been observed at the cosmic variance limit, but polarisation remains to be further investigated. CMB polarisation data are important not only because they contribute to provide tighter constraints of cosmological parameters but also because they allow the investigation of physical processes that would be precluded if just the CMB temperature maps were considered. We take polarisation data into account to assess the statistical significance of the anomalies currently observed only in the CMB temperature map and to constrain the Cosmic Birefringence (CB) effect, which is expected in parity-violating extensions of the standard electromagnetism. In particular, we propose a new one-dimensional estimator for the lack of power anomaly capable of taking both temperature and polarisation into account jointly. With the aim of studying the anisotropic CB we develop and perform two different and complementary methods able to evaluate the power spectrum of the CB. Finally, by employing these estimators and methodologies on Planck data we provide new constraints beyond what already known in literature. The measure of CMB polarisation represents a technological challenge and to make accurate estimates, one has to keep an exquisite control of the systematic effects. In order to investigate the impact of spurious signal in forthcoming CMB polarisation experiments, we study the interplay between half-wave plates (HWP) non-idealities and the beams. Our analysis suggests that certain HWP configurations, depending on the complexity of Galactic foregrounds and the beam models, significantly impacts the B-mode reconstruction fidelity and could limit the capabilities of next-generation CMB experiments. We provide also a first study of the impact of non-ideal HWPs on CB.
Resumo:
The rotational spectroscopy of several sulfur bearing molecules and their 1:1 water complex, cysteamine, cysteamine monohydrate, 1-thioglycerol and 1-propanethiol were studied in the micro-wave and (or) millimeter-wave range. Precise laboratory spectra and conformational information were obtained. For cysteamine, the conformational space (at the B3LYP-GD3(BJ)/Def2-TZVP level) and the measurement and analysis of its rotational spectra in the 6 - 18 and 59.6 - 120 GHz are reported. The hyperfine structure of the rotational spectra was observed and analyzed for the first time. Based on the measured spectra, a search of the different conformers of cysteamine was performed toward the G+0.693-0.027 molecular cloud. We computed the upper limit of the ratio of ethanolamine to cysteamine, which is >0.8−5.3. For the cysteamine monohydrate, the conformational space was explored (at the B3LYP-GD3(BJ)/Def2-TZVP level). The rotational spectra of the cysteamine monohydrate complex have been assigned in the frequency range 6 – 18.5 GHz. The global minimum, Conf A1, was the only observed one. The 34S isotopologue of Conf A1 was observed in natural abundance, while 18O isotopologue was detected by introducing the H218O. In this conformer, the water molecule plays both proton donor and acceptor roles, forming a OHw···N interaction, a SH···Ow interaction and a CH···Ow interaction. The conformational space of 1-thioglycerol has been characterized by quantum mechanical calculation and its rotational spectrum has been recorded and analyzed in the frequency range 59.6 - 78.4 GHz. The global minimum of 1-thioglycerol is gTg’Gg’ and were detected together with gTg’Tg and gGgG’g, while the two detected conformers are g’G’gGg’ and tGgGg. The high-resolution rotational spectrum of 1-propanethiol in the frequency range 59.6 – 78.4 GHz was measured. Two conformers, Gg and Tg, were observed and their spectra were analyzed. Considering the overall conformational space calculated at the B3LYP-GD3(BJ)/Def2-TZVP level they are among the lowest energy conformers.
Resumo:
In this thesis work a nonlinear model for Interdigitated Capacitors (IDCs) based on ferroelectric materials, is proposed. Through the properties of materials such as Hafnium-Zirconium Oxide (HfZrO2), it is possible to realize tunable radiofrequency (RF) circuits. In particular, the model proposed in this thesis describes the use of an IDC, realized on a High-Resistivity silicon substrate, as a phase shifter for beam-steering applications. The model is obtained starting from already present experimental measurements, through which it is possible to identify a circuit model. The model is tested for both low power values and other power values using Harmonic Balance simulations, which show an excellent convergence of the model up to 40 dBm of input power. Furthermore, an array composed by two patches operating both at 2.55 GHz, which exploits the tunable properties of the HfZrO-based IDC is proposed. At 0dBm the model shows a 47° phase shift with polarization -1 V and 1 V which leads to a 11° steering of the main lobe of the array.
Resumo:
El Niño-Southern Oscillation (ENSO) è il maggiore fenomeno climatico che avviene a livello dell’Oceano Pacifico tropicale e che ha influenze ambientali, climatiche e socioeconomiche a larga scala. In questa tesi si ripercorrono i passi principali che sono stati fatti per tentare di comprendere un fenomeno così complesso. Per prima cosa, si sono studiati i meccanismi che ne governano la dinamica, fino alla formulazione del modello matematico chiamato Delayed Oscillator (DO) model, proposto da Suarez e Schopf nel 1988. In seguito, per tenere conto della natura caotica del sistema studiato, si è introdotto nel modello lo schema chiamato Stochastically Perturbed Parameterisation Tendencies (SPPT). Infine, si sono portati due esempi di soluzione numerica del DO, sia con che senza l’introduzione della correzione apportata dallo schema SPPT, e si è visto in che misura SPPT porta reali miglioramenti al modello studiato.
Resumo:
In this thesis, we explore constraints which can be put on the primordial power spectrum of curvature perturbations beyond the scales probed by anisotropies of the cosmic microwave background and galaxy surveys. We exploit present and future measurements of CMB spectral distortions, and their synergy with CMB anisotropies, as well existing and future upper limits on the stochastic background of gravitational waves. We derive for the first time phenomenological templates that fit small-scale bumps in the primordial power spectrum generated in multi-field models of inflation. By using such templates, we study for the first time imprints of primordial peaks on anisotropies and spectral distortions of the cosmic microwave background and we investigate their contribution to the stochastic background of gravitational waves. Through a Monte Carlo Markov Chain analysis we infer for the first time the constraints on the amplitude, the width and the location of such bumps using Planck and FIRAS data. We also forecast how a future spectrometer like PIXIE could improve FIRAS boundaries. The results derived in this thesis have implications for the possibility of primordial black holes from inflation.
Resumo:
This paper proposes a methodology for spectrophotometric determination of hexamethylenetetramine (HMT) by using chromotropic acid in a phosphoric acid media employing a domestic microwave oven as a source of heating. The reddish-purple soluble product is quantitatively formed after 30 s of irradiation and obeys the Beer´s law in the range between 0.1-1.2 mg L-1 HMT (r = 0.99925). The method was applied successfully in commercial pharmaceutical preparations containing dyes in their composition. The results showed that the method proposed is feasible for simplicity, speed, low cost, precision and accuracy when compared with United States Pharmacopeia official method.
Resumo:
This study examined the influence of three polymerization cycles (1: heat cure - long cycle; 2: heat cure - short cycle; and 3: microwave activation) on the linear dimensions of three denture base resins, immediately after deflasking, and 30 days after storage in distilled water at 37± 2ºC. The acrylic resins used were: Clássico, Lucitone 550 and Acron MC. The first two resins were submitted to all three polymerization cycles, and the Acron MC resin was cured by microwave activation only. The samples had three marks, and dimensions of 65 mm in length, 10 mm in width and 3 mm in thickness. Twenty-one test specimens were fabricated for each combination of resin and cure cycle, and they were submitted to three linear dimensional evaluations for two positions (A and B). The changes were evaluated using a microscope. The results indicated that all acrylic resins, regardless of the cure cycle, showed increased linear dimension after 30 days of storage in water. The composition of the acrylic resin affected the results more than the cure cycles, and the conventional acrylic resin (Lucitone 550 and Clássico) cured by microwave activation presented similar results when compared with the resin specific for microwave activation.
Resumo:
Two kinds of roasting cocoa system: conventional batch method in electrical oven, and by microwaves, in a continuous microwave rotary applicator (2450MHz), were compared with respect to viscosity. Cocoa was roasted in whole beans and in nibs. The variable used in the microwave treatment was the power density applied to the whole beans (254,45 to 290,80 Wh/kg) and to the nibs (227,27 to 262,23 Wh/kg), with a constant holding time of 10 minutes. The variable used in the conventional roasting process was the roasting time of the beans (40 to 44 min) and the nibs (34 to 38 min), with constant temperature in the jacket of electric oven (150°C). Viscosity was measured in a Brookfield rheometer (mod RV-DVIII) at 40°C. In general, the plastic viscosity of the microwaved samples was lower than that of the conventional roasted samples. Also the nibs showed lower viscosities than the whole beans when roasted in the electric oven. The viscosity of the samples roasted in the microwave oven was lower in the whole beans than in the nibs. The product was sensorially evaluated by three experts in cocoa flavour, and it was shown that the flavour of the microwave roasted products was similar to that of the conventionally roasted products, with the advantage of a reduction in process time.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física