897 resultados para micro-robotics
Resumo:
A micro-electrospray interface was developed specifically for the neurobiological applications described in this dissertation. Incorporation of a unique nano-flow liquid chromatography micro-electrospray "needle" into the micro-electrospray interface (micro-ES/MS) increased the sensitivity of the mass spectrometric assay by $\sim$1000 fold and thus permitted the first analysis of specific neuroactive compounds in brain extracellular fluid collected by in vivo microdialysis (Md).^ Initial in vivo data presented deals with the pharmacodynamics of a novel GABA$\sb{\rm B}$ antagonist and the availability of the compound in its parent (unmetabolized) form to the brain of the anesthetized rat. Next, the first structurally specific endogenous release of (Met) $\sp5$-enkephalin was demonstrated in unanesthetized freely-moving animals (release of $\sim$6.5 fmole of (Met) $\sp5$-enkephalin into the dialysate by direct neuronal depolarization). The Md/micro-ES/MS system was used to test the acute effects of drugs of abuse on the endogenous release of (Met) $\sp5$-enkephalin from the globus pallidus/ventral pallidum brain region in rats. Four drugs known to be abused by man (morphine, cocaine, methamphetamine and diazepam) were tested. Morphine and cocaine both elicited a two-fold or more increase in the release of (Met) $\sp5$-enkephalin over vehicle controls. Diazepam elicited a small decrease in (Met) $\sp5$-enkephalin levels and methamphetamine showed no significant effect on (Met) $\sp5$-enkephalin. These results imply that (Met) $\sp5$-enkephalin may be involved in the reward pathway of certain drugs of abuse. ^
Resumo:
This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.
Resumo:
BACKGROUND:
Robotics-assisted tilt table technology was introduced for early rehabilitation of neurological patients. It provides cyclical stepping movement and physiological loading of the legs. The aim of the present study was to assess the feasibility of this type of device for peak cardiopulmonary performance testing using able-bodied subjects.
METHODS:
A robotics-assisted tilt table was augmented with force sensors in the thigh cuffs and a work rate estimation algorithm. A custom visual feedback system was employed to guide the subjects' work rate and to provide real time feedback of actual work rate. Feasibility assessment focused on: (i) implementation (technical feasibility), and (ii) responsiveness (was there a measurable, high-level cardiopulmonary reaction?). For responsiveness testing, each subject carried out an incremental exercise test to the limit of functional capacity with a work rate increment of 5 W/min in female subjects and 8 W/min in males.
RESULTS:
11 able-bodied subjects were included (9 male, 2 female; age 29.6 ± 7.1 years: mean ± SD). Resting oxygen uptake (O
Resumo:
Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.
Resumo:
BACKGROUND Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content. METHODS The dual ex-vivo perfusion system was used to perfuse isolated cotyledons from human placenta, with medium alone (control) or supplemented with cell-free Hb. Perfusion medium from the maternal side of the placenta was collected at the end of all perfusion phases. The STBMs were isolated using ultra-centrifugation, at 10,000×g and 150,000×g (referred to as 10K and 150K STBMs). The STBMs were characterized using the nanoparticle tracking analysis, identification of surface markers and transmission electron microscopy. RNA was extracted and nine different micro-RNAs, related to hypoxia, PE and Hb synthesis, were selected for analysis by quantitative PCR. RESULTS All micro-RNAs investigated were present in the STBMs. Mir-517a, mir-141 and mir-517b were down regulated after Hb perfusion in the 10K STBMs. Furthermore, Hb was shown to be carried by the STBMs. CONCLUSION This study showed that Hb perfusion can alter the micro-RNA content of released STBMs. Of particular interest is the alteration of two placenta specific micro-RNAs; mir-517a and mir-517b. We have also seen that STBMs may function as carriers of Hb into the maternal circulation.
Resumo:
Robotics-assisted tilt table (RATT) technology provides body support, cyclical stepping movement and physiological loading. This technology can potentially be used to facilitate the estimation of peak cardiopulmonary performance parameters in patients who have neurological or other problems that may preclude testing on a treadmill or cycle ergometer. The aim of the study was to compare the magnitude of peak cardiopulmonary performance parameters including peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) obtained from a robotics-assisted tilt table (RATT), a cycle ergometer and a treadmill. The strength of correlations between the three devices, test-retest reliability and repeatability were also assessed. Eighteen healthy subjects performed six maximal exercise tests, with two tests on each of the three exercise modalities. Data from the second tests were used for the comparative and correlation analyses. For nine subjects, test-retest reliability and repeatability of VO2peak and HRpeak were assessed. Absolute VO2peak from the RATT, the cycle ergometer and the treadmill was (mean (SD)) 2.2 (0.56), 2.8 (0.80) and 3.2 (0.87) L/min, respectively (p < 0.001). HRpeak from the RATT, the cycle ergometer and the treadmill was 168 (9.5), 179 (7.9) and 184 (6.9) beats/min, respectively (p < 0.001). VO2peak and HRpeak from the RATT vs the cycle ergometer and the RATT vs the treadmill showed strong correlations. Test-retest reliability and repeatability were high for VO2peak and HRpeak for all devices. The results demonstrate that the RATT is a valid and reliable device for exercise testing. There is potential for the RATT to be used in severely impaired subjects who cannot use the standard modalities.
Resumo:
BACKGROUND: We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. METHODS: Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. RESULTS: Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O2peak), peak heart rate (HRpeak) and peak work rate (WRpeak) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O2max), 117 ± 32 beats/min (72 % of predicted HRmax) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O2 at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O2peak. Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O2 was 6.9 ml/kg/min (49 % of V'O2 reserve), mean HR was 90 beats/min (56 % of HRmax), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. CONCLUSIONS: The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent-ambulatory stroke patients: the approach was found to be technically implementable, acceptable to the patients, and it showed substantial cardiopulmonary responsiveness. This work has clinical implications for patients with severe disability who otherwise are not able to be tested.