994 resultados para micro-channel plate
Resumo:
Collaborative software is usually thought of as providing audio-video conferencing services, application/desktop sharing, and access to large content repositories. However mobile device usage is characterized by users carrying out short and intermittent tasks sometimes referred to as 'micro-tasking'. Micro-collaborations are not well supported by traditional groupware systems and the work in this paper seeks out to address this. Mico is a system that provides a set of application level peer-to-peer services for the ad-hoc formation and facilitation of collaborative groups across a diverse mobile device domain. The system builds on the Java ME bindings of the JXTA P2P protocols, and is designed with an approach to use the lowest common denominators that are required for collaboration between varying degrees of mobile device capability. To demonstrate how our platform facilitates application development, we built an exemplary set of demonstration applications and include code examples here to illustrate the ease and speed afforded when developing collaborative software with Mico.
Resumo:
The mechanism by which Ca2+ enters electrically non-excitable cells is unclear. The sensitivity of the Ca2+ entry pathway in electrically non-excitable cells to inhibition by extracellular Ni2+ was used to direct the synthesis of a library of simple, novel compounds. These novel compounds inhibit Ca2+ entry into and, consequently, proliferation of several cancer cell lines. They showed stereoselective inhibition of proliferation and Ca2+ influx with identical stereoselective inhibition of heterologously expressed Cav3.2 isoform of T-type Ca2+ channels. Proliferation of human embryonic kidney (HEK)293 cells transfected with the Cav3.2 Ca2+ channel was also blocked. Cancer cell lines sensitive to our compounds express message for the Cav3.2 T-type Ca2+ channel isoform, its delta25B splice variant, or both, while a cell line resistant to our compounds does not. These observations raise the possibility that clinically useful drugs can be designed based upon the ability to block these Ca2+ channels.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
A Viewpoint on: 'Surface Geometry of C60 on Ag(111)' H. I. Li, K. Pussi, K. J. Hanna, L.-L. Wang, D. D. Johnson, H.-P. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. A. Smerdon, R. McGrath, and R. D. Diehl. . Published in Physical Review Letters 103, 056101 (2009) on July 27, 2009.
Resumo:
Samples taken from middens at the Neolithic site of Catalhoyuk in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hack-berries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
High-temperature polyol methods were used to fabricate micro- or nano-sized gold plates. 1,2propanediol served as both medium and reducing agent. Triangular plates and polygonal plate shapes derived from triangular prisms as well as pentagonal structured gold particles have been synthesized. Poly(vinylpyrrolidone) (PVP) plays an important role, but is not necessary, for the formation of these structures. These gold plates may have applications in the characterisation of adsorbed proteins or peptides. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Neuropathic pain is a difficult state to treat, characterized by alterations in sensory processing that can include allodynia (touch-evoked pain). Evidence exists for nerve damage-induced plasticity in both transmission and modulatory systems, including changes in voltage-dependent calcium channel (VDCC) expression and function; however, the role of Ca(v)2.3 calcium channels has not clearly been defined. Here, the effects of SNX-482, a selective Ca(v)2.3 antagonist, on sensory transmission at the spinal cord level have been investigated in the rat. The spinal nerve ligation (SNL) model of chronic neuropathic pain [Kim & Chung, (1992) Pain, 50, 355-363] was used to induce mechanical allodynia, as tested on the ipsilateral hindpaw. In vivo electrophysiological measurements of dorsal horn neuronal responses to innocuous and noxious electrical and natural stimuli were made after SNL and compared to sham-operated animals. Spinal SNX-482 (0.5-4 mu g/50 mu L) exerted dose-related inhibitions of noxious C-fibre- and A delta-fibre-mediated neuronal responses in conditions of neuropathy, but not in sham-operated animals. Measures of spinal cord hyperexcitability and nociception were most susceptible to SNX-482. In contrast, non-noxious A beta-mediated responses were not affected by SNX-482. Moreover, responses to innocuous mechanical and also thermal stimuli were more sensitive to SNX-482 in SNL than control animals. This study is the first to demonstrate an antinociceptive role for SNX-482-sensitive channels in dorsal horn neurons during neuropathy. These data are consistent with plasticity in Ca(V)2.3 calcium channel expression and suggest a potential selective target to reduce nociceptive transmission during conditions of nerve damage.
Resumo:
We explored the dependency of the saccadic remote distractor effect (RDE) on the spatial frequency content of target and distractor Gabor patches. A robust RDE was obtained with low-medium spatial frequency distractors, regardless of the spatial frequency of the tat-get. High spatial frequency distractors interfered to a similar extent when the target was of the same spatial frequency. We developed a quantitative model based on lateral inhibition within an oculomotor decision unit. This lateral inhibition mechanism cannot account for the interaction observed between target and distractor spatial frequency, pointing to the existence of channel interactions at an earlier level. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The General Packet Radio Service (GPRS) has been developed for the mobile radio environment to allow the migration from the traditional circuit switched connection to a more efficient packet based communication link particularly for data transfer. GPRS requires the addition of not only the GPRS software protocol stack, but also more baseband functionality for the mobile as new coding schemes have be en defined, uplink status flag detection, multislot operation and dynamic coding scheme detect. This paper concentrates on evaluating the performance of the GPRS coding scheme detection methods in the presence of a multipath fading channel with a single co-channel interferer as a function of various soft-bit data widths. It has been found that compressing the soft-bit data widths from the output of the equalizer to save memory can influence the likelihood decision of the coding scheme detect function and hence contribute to the overall performance loss of the system. Coding scheme detection errors can therefore force the channel decoder to either select the incorrect decoding scheme or have no clear decision which coding scheme to use resulting in the decoded radio block failing the block check sequence and contribute to the block error rate. For correct performance simulation, the performance of the full coding scheme detection must be taken into account.
Resumo:
Finding an estimate of the channel impulse response (CIR) by correlating a received known (training) sequence with the sent training sequence is commonplace. Where required, it is also common to truncate the longer correlation to a sub-set of correlation coefficients by finding the set of N sequential correlation coefficients with the maximum power. This paper presents a new approach to selecting the optimal set of N CIR coefficients from the correlation rather than relying on power. The algorithm reconstructs a set of predicted symbols using the training sequence and various sub-sets of the correlation to find the sub-set that results in the minimum mean squared error between the actual received symbols and the reconstructed symbols. The application of the algorithm is presented in the context of the TDMA based GSM/GPRS system to demonstrate an improvement in the system performance with the new algorithm and the results are presented in the paper. However, the application lends itself to any training sequence based communication system often found within wireless consumer electronic device(1).
Resumo:
Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.
Resumo:
Due to its popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, we proposed an improved asynchronous distributed and dynamic channel assignment scheme that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of the proposed scheme in practical scenarios found in densely populated WLAN deployments. Specifically, we investigate the convergence behaviour of the scheme and how its performance gains vary with different number of available channels and in different deployment densities. We also prove that our scheme is guaranteed to converge in a single iteration when the number of channels is greater than the number of neighbouring APs.
Resumo:
Due to their popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. Previous studies on channel assignment in WLANs almost always assume that all access points (AP) employ the same channel assignment scheme which is clearly unrealistic. On the other hand, to the best of our knowledge, the interaction between different channel assignment schemes has also not been studied before. Therefore, in this paper, we investigate the effectiveness of our earlier proposed asynchronous channel assignment scheme in these heterogeneous WLANs scenarios. Simulation results show that our proposed scheme is still able to provide robust performance gains even in these scenarios.
Resumo:
Wireless local area networks (WLANs) have changed the way many of us communicate, work, play and live. Due to its popularity, dense deployments are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable if an effective channel assignment scheme is not used. In this paper, we propose an enhanced asynchronous distributed and dynamic channel assignment scheme that is simple to implement, does not require any knowledge of the throughput function, allows asynchronous channel switching by each access point (AP) and is superior in performance. Simulation results show that our proposed scheme converges much faster than previously reported synchronous schemes, with a reduction in convergence time and channel switches by tip to 73.8% and 30.0% respectively.