971 resultados para mercurous chloride
Resumo:
The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.
Resumo:
Several studies have demonstrated that mice are polymorphic for the number of renin genes, with some inbred strains harboring one gene (Ren-1(c)) and other strains containing two genes (Ren-1(d) and Ren-2). In this study, the effects of 1% salt and deoxycorticosterone acetate (DOCA)/salt were investigated in one- and two-renin gene mice, for elucidation of the role of renin in the modulation of BP, cardiac, and renal responses to salt and DOCA. The results demonstrated that, under baseline conditions, mice with two renin genes exhibited 10-fold higher plasma renin activity, 100-fold higher plasma renin concentrations, elevated BP (which was angiotensin II-dependent), and an increased cardiac weight index, compared with one-renin gene mice (all P < 0.01). The presence of two renin genes markedly increased the BP, cardiac, and renal responses to salt. The number of renin genes also modulated the responses to DOCA/salt. In one-renin gene mice, DOCA/salt induced significant renal and cardiac hypertrophy (P < 0.01) even in the absence of any increase in BP. Treatment with losartan, an angiotensin II AT(1) receptor antagonist, decreased BP in two-renin gene mice but not in one-renin gene mice. However, losartan prevented the development of cardiac hypertrophy in both groups of mice. In conclusion, these data demonstrate that renin genes are important determinants of BP and of the responses to salt and DOCA in mice. The results confirm that the Ren-2 gene, which controls renin production mainly in the submaxillary gland, is physiologically active in mice and is not subject to the usual negative feedback control. Finally, these data provide further evidence that mineralocorticoids promote cardiac hypertrophy even in the absence of BP changes. This hypertrophic process is mediated in part by the activation of angiotensin II AT(1) receptors.
Resumo:
Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.
Resumo:
The legal Pantanal caiman (Caiman crocodilus yacare) farming, in Brazil, has been stimulated and among meat preservation techniques the salting process is a relatively simple and low-cost method. The objective of this work was to study the sodium chloride diffusion kinetics in farmed caiman muscle during salting. Limited volumes of brine were employed, with salting essays carried at 3, 4 and 5 brine/muscle ratios, at 15%, 20% and 25% w/w brine concentrations, and brine temperatures of 10, 15 and 20ºC. The analytical solution of second Fick's law considering one-dimensional diffusion through an infinite slab in contact with a well-stirred solution of limited volume was used to calculate effective salt diffusion coefficients and to predict the sodium chloride content in the fillets. A good agreement was obtained between the considered analytical model and experimental data. Salt diffusivities in fillets were found to be in the range of 0.47x10-10 to 9.62x10-10 m²/s.
Resumo:
In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.
Resumo:
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Resumo:
Propane can be responsible for several types of lethal intoxication and explosions. Quantifying it would be very helpful to determine in some cases the cause of death. Some gas chromatography-mass spectrometry (GC-MS) methods of propane measurements do already exist. The main drawback of these GC-MS methods described in the literature is the absence of a specific propane internal standard necessary for accurate quantitative analysis. The main outcome of the following study was to provide an innovative Headspace-GC-MS method (HS-GC-MS) applicable to the routine determination of propane concentration in forensic toxicology laboratories. To date, no stable isotope of propane is commercially available. The development of an in situ generation of standards is thus presented. An internal-labeled standard gas (C3DH7) is generated in situ by the stoichiometric formation of propane by the reaction of deuterated water (D2O) with Grignard reagent propylmagnesium chloride (C3H7MgCl). The method aims to use this internal standard to quantify propane concentrations and, therefore, to obtain precise measurements. Consequently, a complete validation with an accuracy profile according to two different guidelines, the French Society of Pharmaceutical Sciences and Techniques (SFSTP) and the Gesellschaft für toxikologische und Forensische Chemie (GTFCh), is presented.
Resumo:
Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.
Resumo:
Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.
Resumo:
The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.
Resumo:
The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).
Resumo:
Intrusion of deicing materials and surface water into concrete bridge decks is a main contributor in deck reinforcing steel corrosion and concrete delamination. Salt, spread on bridge decks to melt ice, dissolves in water and permeates voids in the concrete deck. When the chloride content of the concrete in contact with reinforcing steel reaches a high enough concentration, the steel oxidizes. In Iowa, the method used to reduce bridge deck chloride penetration is the application of a low slump dense concrete overlay after the completion of all Class A and Class B floor repairs. A possible alternative to the use of dense concrete overlays, developed by Poly-Carb, Inc., is the MARK-163 FLEXOGRID Overlay System. FLEXOGRID is a two component system of epoxy and urethane which is applied on a bridge deck to a minimum thickness of ¼ inch. An aggregate mixture of silica quartz and aluminum oxide is broadcast onto the epoxy at a prescribed rate to provide deck protection and superior friction properties. The material is mixed on site and applied to the deck in a series of lifts (usually two) until the desired overlay thickness has been attained.
Resumo:
The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.
Resumo:
A two-stage mixing process for concrete involves mixing a slurry of cementitious materials and water, then adding the slurry to coarse and fine aggregate to form concrete. Some research has indicated that this process might facilitate dispersion of cementitious materials and improve cement hydration, the characteristics of the interfacial transition zone (ITZ) between aggregate and paste, and concrete homogeneity. The goal of the study was to find optimal mixing procedures for production of a homogeneous and workable mixture and quality concrete using a two-stage mixing operation. The specific objectives of the study are as follows: (1) To achieve optimal mixing energy and time for a homogeneous cementitious material, (2) To characterize the homogeneity and flow property of the pastes, (3) To investigate effective methods for coating aggregate particles with cement slurry, (4) To study the effect of the two-stage mixing procedure on concrete properties, (5) To obtain the improved production rates. Parameters measured for Phase I included: heat of hydration, maturity, and rheology tests were performed on the fresh paste samples, and compressive strength, degree of hydration, and scanning electron microscope (SEM) imaging tests were conducted on the cured specimens. For Phases II and III tests included slump and air content on fresh concrete and compressive and tensile strengths, rapid air void analysis, and rapid chloride permeability on hardened concrete.
Resumo:
Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. While the method most commonly used throughout the Midwestern United States is to construct concrete bridge decks with fusion-bonded epoxy-coated reinforcing bars, galvanized reinforcing bars are an available alternative. Previous studies of the in situ performance of galvanized reinforcing bars in service in bridge decks have been limited. IaDOT requested that Wiss, Janney, Elstner Associates, Inc. (WJE) perform this study to gain further understanding of the long-term performance of an Iowa bridge deck reinforced with galvanized reinforcing bars. This study characterized the condition of a bridge deck with galvanized reinforcing bars after about 36 years of service and compared that performance to the expected performance of epoxy-coated or uncoated reinforcing bars in similar bridge construction. For this study, IaDOT selected the Iowa State Highway 92 bridge across Drainage Ditch #25 in Louisa County, Iowa (Structure No. 5854.5S092), which was constructed using galvanized reinforcing bars as the main deck reinforcing. The scope of work for this study included: field assessment, testing, and sampling; laboratory testing and analysis; analysis of findings; service life modeling; and preparation of this report. In addition, supplemental observations of the condition of the galvanized reinforcing bars were made during a subsequent project to repair the bride deck.