990 resultados para mechanistic models
Resumo:
Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.
Resumo:
The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the desired level of accuracy. The primary objective of this research was to develop a laboratory testing program utilizing the Iowa DOT servo-hydraulic machine system for evaluating typical Iowa unbound materials and to establish a database of input values for MEPDG analysis. This was achieved by carrying out a detailed laboratory testing program designed in accordance with the AASHTO T307 resilient modulus test protocol using common Iowa unbound materials. The program included laboratory tests to characterize basic physical properties of the unbound materials, specimen preparation and repeated load triaxial tests to determine the resilient modulus. The MEPDG resilient modulus input parameter library for Iowa typical unbound pavement materials was established from the repeated load triaxial MR test results. This library includes the non-linear, stress-dependent resilient modulus model coefficients values for level 1 analysis, the unbound material properties values correlated to resilient modulus for level 2 analysis, and the typical resilient modulus values for level 3 analysis. The resilient modulus input parameters library can be utilized when designing low volume roads in the absence of any basic soil testing. Based on the results of this study, the use of level 2 analysis for MEPDG resilient modulus input is recommended since the repeated load triaxial test for level 1 analysis is complicated, time consuming, expensive, and requires sophisticated equipment and skilled operators.
Resumo:
The objective of this study is to systematically evaluate the Iowa Department of Transportation’s (DOT’s) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Design Guide (MEPDG) rehabilitation analysis and design. To accomplish this objective, all of available PMIS data for interstate and primary roads in Iowa were retrieved from the Iowa DOT PMIS. The retrieved data were evaluated with respect to the input requirements and outputs for the latest version of the MEPDG software (version 1.0). The input parameters that are required for MEPDG HMA rehabilitation design, but currently unavailable in the Iowa DOT PMIS were identified. The differences in the specific measurement metrics used and their units for some of the pavement performance measures between the Iowa DOT PMIS and MEPDG were identified and discussed. Based on the results of this study, it is recommended that the Iowa DOT PMIS should be updated, if possible, to include the identified parameters that are currently unavailable, but are required for MEPDG rehabilitation design. Similarly, the measurement units of distress survey results in the Iowa DOT PMIS should be revised to correspond to those of MEPDG performance predictions. *******************Large File**************************
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.
Resumo:
This guide provides a variety of tools that can help an educator, building staff or school district decide how to include environmental education in their curriculum.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.
Resumo:
The prediction of rockfall travel distance below a rock cliff is an indispensable activity in rockfall susceptibility, hazard and risk assessment. Although the size of the detached rock mass may differ considerably at each specific rock cliff, small rockfall (<100 m3) is the most frequent process. Empirical models may provide us with suitable information for predicting the travel distance of small rockfalls over an extensive area at a medium scale (1:100 000¿1:25 000). "Solà d'Andorra la Vella" is a rocky slope located close to the town of Andorra la Vella, where the government has been documenting rockfalls since 1999. This documentation consists in mapping the release point and the individual fallen blocks immediately after the event. The documentation of historical rockfalls by morphological analysis, eye-witness accounts and historical images serve to increase available information. In total, data from twenty small rockfalls have been gathered which reveal an amount of a hundred individual fallen rock blocks. The data acquired has been used to check the reliability of the main empirical models widely adopted (reach and shadow angle models) and to analyse the influence of parameters which affecting the travel distance (rockfall size, height of fall along the rock cliff and volume of the individual fallen rock block). For predicting travel distances in maps with medium scales, a method has been proposed based on the "reach probability" concept. The accuracy of results has been tested from the line entailing the farthest fallen boulders which represents the maximum travel distance of past rockfalls. The paper concludes with a discussion of the application of both empirical models to other study areas.