938 resultados para mechanism of action of medicines
Resumo:
Escherichia coli possesses three SOS-inducible DNA polymerases (Pol II, IV, and V) that were recently found to participate in translesion synthesis and mutagenesis. Involvement of these polymerases appears to depend on the nature of the lesion and its local sequence context, as illustrated by the bypass of a single N-2-acetylaminofluorene adduct within the NarI mutation hot spot. Indeed, error-free bypass requires Pol V (umuDC), whereas mutagenic (−2 frameshift) bypass depends on Pol II (polB). In this paper, we show that purified DNA Pol II is able in vitro to generate the −2 frameshift bypass product observed in vivo at the NarI sites. Although the ΔpolB strain is completely defective in this mutation pathway, introduction of the polB gene on a low copy number plasmid restores the −2 frameshift pathway. In fact, modification of the relative copy number of polB versus umuDC genes results in a corresponding modification in the use of the frameshift versus error-free translesion pathways, suggesting a direct competition between Pol II and V for the bypass of the same lesion. Whether such a polymerase competition model for translesion synthesis will prove to be generally applicable remains to be confirmed.
Resumo:
There is a growing body of evidence, including data from human genetic and T-cell receptor function studies, which implicate a zeta-associated protein of M(r) 70,000 (Zap-70) as a critical protein tyrosine kinase in T-cell activation and development. During T-cell activation, Zap-70 becomes associated via its src homology type 2 (SH2) domains with tyrosine-phosphorylated immune-receptor tyrosine activating motif (ITAM) sequences in the cytoplasmic zeta chain of the T-cell receptor. An intriguing conundrum is how Zap-70 is catalytically activated for downstream phosphorylation events. To address this question, we have used purified Zap-70, tyrosine phosphorylated glutathione S-transferase (GST)-Zeta, and GST-Zeta-1 cytoplasmic domains, and various forms of ITAM-containing peptides to see what effect binding of zeta had upon Zap-70 tyrosine kinase activity. The catalytic activity of Zap-70 with respect to autophosphorylation increased approximately 5-fold in the presence of 125 nM phosphorylated GST-Zeta or GST-Zeta-1 cytoplasmic domain. A 20-fold activity increase was observed for phosphorylation of an exogenous substrate. Both activity increases showed a GST-Zeta concentration dependence. The increase in activity was not produced with nonphosphorylated GST-Zeta, phosphorylated zeta, or phosphorylated ITAM-containing peptides. The increase in Zap-70 activity was SH2 mediated and was inhibited by phenylphosphate, Zap-70 SH2, and an antibody specific for Zap-70 SH2 domains. Since GST-Zeta and GST-Zeta-1 exist as dimers, the data suggest Zap-70 is activated upon binding a dimeric form of phosphorylated zeta and not by peptide fragments containing a single phosphorylated ITAM. Taken together, these data indicate that the catalytic activity of Zap-70 is most likely activated by a trans-phosphorylation mechanism.
Resumo:
We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm.
Resumo:
HIV-1 replication requires the translocation of viral genome into the nucleus of a target cell. We recently reported the synthesis of an arylene bis(methyl ketone) compound (CNI-H0294) that inhibits nuclear targeting of the HIV-1 genome and thus HIV-1 replication in monocyte cultures. Here we demonstrate that CNI-H0294 inhibits nuclear targeting of HIV-1-derived preintegration complexes by inactivating the nuclear localization sequence of the HIV-1 matrix antigen in a reaction that absolutely requires reverse transcriptase. This drug/reverse transcriptase interaction defines the specificity of its antiviral effect and is most likely mediated by the pyrimidine side-chain of CNI-H0294. After binding to reverse transcriptase, the carbonyl groups of CNI-H0294 react with the nuclear localization sequence of matrix antigen and prevent its binding to karyopherin alpha, the cellular receptor for nuclear localization sequences that carries proteins into the nucleus. Our results provide a basis for the development of a novel class of compounds that inhibit nuclear translocation and that can, in principle, be modified to target specific infectious agents.
Resumo:
Delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) promotes an allylic rearrangement involving intramolecular proton transfer via a dienolic intermediate. This enzyme enhances the catalytic rate by a factor of 10(10). Two residues, Tyr-14, the general acid that polarizes the steroid 3-carbonyl group and facilitates enolization, and Asp-38 the general base that abstracts and transfers the 4 beta-proton to the 6 beta-position, contribute 10(4.7) and 10(5.6) to the rate increase, respectively. A major mechanistic enigma is the huge disparity between the pKa values of the catalytic groups and their targets. Upon binding of an analog of the dienolate intermediate to isomerase, proton NMR detects a highly deshielded resonance at 18.15 ppm in proximity to aromatic protons, and with a 3-fold preference for protium over deuterium (fractionation factor, phi = 0.34), consistent with formation of a short, strong (low-barrier) hydrogen bond to Tyr-14. The strength of this hydrogen bond is estimated to be at least 7.1 kcal/mol. This bond is relatively inaccessible to bulk solvent and is pH insensitive. Low-barrier hydrogen bonding of Tyr-14 to the intermediate, in conjunction with the previously demonstrated tunneling contribution to the proton transfer by Asp-38, provide a plausible and quantitative explanation for the high catalytic power of this isomerase.
Resumo:
The folding mechanism of a 125-bead heteropolymer model for proteins is investigated with Monte Carlo simulations on a cubic lattice. Sequences that do and do not fold in a reasonable time are compared. The overall folding behavior is found to be more complex than that of models for smaller proteins. Folding begins with a rapid collapse followed by a slow search through the semi-compact globule for a sequence-dependent stable core with about 30 out of 176 native contacts which serves as the transition state for folding to a near-native structure. Efficient search for the core is dependent on structural features of the native state. Sequences that fold have large amounts of stable, cooperative structure that is accessible through short-range initiation sites, such as those in anti-parallel sheets connected by turns. Before folding is completed, the system can encounter a second bottleneck, involving the condensation and rearrangement of surface residues. Overly stable local structure of the surface residues slows this stage of the folding process. The relation of the results from the 125-mer model studies to the folding of real proteins is discussed.
Resumo:
cGMP phosphodiesterase (PDE) is the key effector enzyme of vertebrate photoreceptor cells that regulates the level of the second messenger, cGMP. PDE consists of catalytic alpha and beta subunits (Palpha and Pbeta) and two inhibitory gamma subunits (Pgamma) that block PDE activity in the dark. The major inhibitory region has been localized to the C terminus of Pgamma. The last C-terminal residues -IleIle form an important hydrophobic domain critical for the inhibition of PDE activity. In this study, mutants of Pgamma were designed for cross-linking experiments to identify regions on Palpha and Pbeta subunits that bind to the Pgamma C terminus. In one of the mutants, the cysteine at position 68 was substituted with serine, and the last four C-terminal residues of Pgamma were replaced with a single cysteine. This mutant, Pgamma83Cys, was labeled with photoprobe 4-(N-maleimido) benzophenone (MBP) at the cysteine residue. The labeled Pgamma83CysMBP mutant was a more potent inhibitor of PDE activity than the unlabeled mutant, indicating that the hydrophobic MBP probe mimics the Pgamma hydrophobic C terminus. A specific, high-yield cross-linking of up to 70% was achieved between the Pgamma83CysMBP and PDE catalytic subunits. Palpha and the N-terminally truncated Pbeta (lacking 147 aa residues) cross-linked to Pgamma83CysMBP with the same efficiency. Using mass spectrometric analysis of tryptic fragments from the cross-linked PDE, we identified the site of cross-linking to aa residues 751-763 of Palpha. The corresponding region of Pbeta, Pbeta-749-761, also may bind to the Pgamma C terminus. Our data suggest that Pgamma blocks PDE activity through the binding to the catalytic site of PDE, near the NKXD motif, a consensus sequence for interaction with the guanine ring of cGMP.
Resumo:
Phagocytic cells are a critical line of defense against infection. The ability of a pathogen to survive and even replicate within phagocytic cells is a potent method of evading the defense mechanisms of the host. A number of pathogens survive within macrophages after phagocytosis and this contributes to their virulence. Salmonella is one of these pathogens. Here we report that 6-14 hr after Salmonella enters the macrophage and replicates, it resides in large vacuoles and causes the destruction of these cells. Furthermore, we identified four independently isolated MudJ-lacZ insertion mutants that no longer cause the formation of these vacuoles or kill the macrophages. All four insertions were located in the ompR/envZ regulon. These findings suggest that killing and escape from macrophages may be as important steps in Salmonella pathogenesis as are survival and replication in these host cells.
Self-organized phase transitions in neural networks as a neural mechanism of information processing.
Resumo:
Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.
Resumo:
The aspartate receptor of bacterial chemotaxis is representative of a large class of membrane-spanning receptors found in prokaryotic and eukaryotic organisms. These receptors, which regulate histidine kinase pathways and possess two putative transmembrane helices per subunit, appear to control a wide variety of cellular processes. The best characterized subgroup of the two-helix receptor class is the homologous family of chemosensory receptors from Escherichia coli and Salmonella typhimurium, including the aspartate receptor. This receptor binds aspartate, an attractant, in the periplasmic compartment and undergoes an intramolecular, transmembrane conformational change, thereby modulating the autophosphorylation rate of a bound histidine kinase in the cytoplasm. Here, we analyze recent results from x-ray crystallographic, solution 19F NMR, and engineered disulfide studies probing the aspartate-induced structural change within the periplasmic and transmembrane regions of the receptor. Together, these approaches provide evidence that aspartate binding triggers a "swinging-piston" displacement of the second membrane-spanning helix, which is proposed to communicate the signal across the bilayer.
Resumo:
Effects of cocaine on the muscle nicotinic acetylcholine receptor were investigated by using a chemical kinetic technique with a microsecond time resolution. This membrane-bound receptor regulates signal transmission between nerve and muscle cells, initiates muscle contraction, and is inhibited by cocaine, an abused drug. The inhibition mechanism is not well understood because of the lack of chemical kinetic techniques with the appropriate (microsecond) time resolution. Such a technique, utilizing laser-pulse photolysis, was recently developed; by using it the following results were obtained. (i) The apparent cocaine dissociation constant of the closed-channel receptor form is approximately 50 microM. High carbamoylcholine concentration and, therefore, increased concentrations of the open-channel receptor form, decrease receptor affinity for cocaine approximately 6-fold. (ii) The rate of the receptor reaction with cocaine is at least approximately 30-fold slower than the channel-opening rate, resulting in a cocaine-induced decrease in the concentration of open receptor channels without a concomitant decrease in the channel-opening or -closing rates. (iii) The channel-closing rate increases approximately 1.5-fold as the cocaine concentration is increased from 20 to 60 microM but then remains constant as the concentration is increased further. The results are consistent with a mechanism in which cocaine first binds rapidly to a regulatory site of the receptor, which can still form transmembrane channels. Subsequently, a slow step (t1/2 approximately 70 ms) leads to a receptor form that cannot form transmembrane channels, and acetylcholine receptor-mediated signal transmission is, therefore, blocked. Implications for the search for therapeutic agents that alleviate cocaine poisoning are mentioned.
Resumo:
GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.
Resumo:
Bacteriorhodopsin is a membrane protein that functions as a light-driven proton pump. Each cycle of proton transport is initiated by the light-induced isomerization of retinal from the all-trans to 13-cis configuration and is completed by the protein-driven reisomerization of retinal to the all-trans configuration. Previous studies have shown that replacement of Leu-93, a residue in close proximity to the 13-methyl group of retinal, by alanine, resulted in a 250-fold increase in the time required to complete each photocycle. Here, we show that the kinetic defect in the photocycle of the Leu-93-->Ala mutant occurs at a stage after the completion of proton transport and can be overcome in the presence of strong background illumination. Time-resolved retinal-extraction experiments demonstrate the continued presence of a 13-cis intermediate in the photocycle of the Leu-93-->Ala mutant well after the completion of proton release and uptake. These results indicate that retinal reisomerization is kinetically the rate-limiting step in the photocycle of this mutant and that the slow thermal reisomerization can be bypassed by the absorption of a second photon. The effects observed for the Leu-93-->Ala mutant are not observed upon replacement of any other residue in van der Waals contact with retinal or upon replacement of Leu-93 by valine. We conclude that the contact between Leu-93 and the 13-methyl group of retinal plays a key role in controlling the rate of protein conformational changes associated with retinal reisomerization and return of the protein to the initial state.
Resumo:
Estradiol is converted to catechol estrogens via 2- and 4-hydroxylation by cytochrome P450 enzymes. 4-Hydroxyestradiol elicits biological activities distinct from estradiol, most notably an oxidant stress response induced by free radicals generated by metabolic redox cycling reactions. In this study, we have examined 2- and 4-hydroxylation of estradiol by microsomes of human uterine myometrium and of associated myomata. In all eight cases studied, estradiol 4-hydroxylation by myoma has been substantially elevated relative to surrounding myometrial tissue (minimum, 2-fold; mean, 5-fold). Estradiol 2-hydroxylation in myomata occurs at much lower rates than 4-hydroxylation (ratio of 4-hydroxyestradiol/2-hydroxyestradiol, 7.9 +/- 1.4) and does not significantly differ from rates in surrounding myometrial tissue. Rates of myometrial 2-hydroxylation of estradiol were also not significantly different from values in patients without myomata. We have used various inhibitors to establish that 4-hydroxylation is catalyzed by a completely different cytochrome P450 than 2-hydroxylation. In myoma, alpha-naphthoflavone and a set of ethynyl polycyclic hydrocarbon inhibitors (5 microM) each inhibited 4-hydroxylation more efficiently (up to 90%) than 2-hydroxylation (up to 40%), indicating > 10-fold differences in Ki (<0.5 microM vs. > 5 microM). These activities were clearly distinguished from the selective 2-hydroxylation of estradiol in placenta by aromatase reported previously (low Km, inhibition by Fadrozole hydrochloride or ICI D1033). 4-Hydroxylation was also selectively inhibited relative to 2-hydroxylation by antibodies raised against cytochrome P450 IB1 (rat) (53 vs. 17%). These data indicate that specific 4-hydroxylation of estradiol in human uterine tissues is catalyzed by a form(s) of cytochrome P450 related to P450 IB1, which contribute(s) little to 2-hydroxylation. This enzyme(s) is therefore a marker for uterine myomata and may play a role in the etiology of the tumor.