945 resultados para mean field independent component analysis
Resumo:
A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.
Resumo:
The singular value decomposition and its interpretation as alinear biplot has proved to be a powerful tool for analysing many formsof multivariate data. Here we adapt biplot methodology to the specifficcase of compositional data consisting of positive vectors each of whichis constrained to have unit sum. These relative variation biplots haveproperties relating to special features of compositional data: the studyof ratios, subcompositions and models of compositional relationships. Themethodology is demonstrated on a data set consisting of six-part colourcompositions in 22 abstract paintings, showing how the singular valuedecomposition can achieve an accurate biplot of the colour ratios and howpossible models interrelating the colours can be diagnosed.
Resumo:
We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.
Resumo:
Repetition of environmental sounds, like their visual counterparts, can facilitate behavior and modulate neural responses, exemplifying plasticity in how auditory objects are represented or accessed. It remains controversial whether such repetition priming/suppression involves solely plasticity based on acoustic features and/or also access to semantic features. To evaluate contributions of physical and semantic features in eliciting repetition-induced plasticity, the present functional magnetic resonance imaging (fMRI) study repeated either identical or different exemplars of the initially presented object; reasoning that identical exemplars share both physical and semantic features, whereas different exemplars share only semantic features. Participants performed a living/man-made categorization task while being scanned at 3T. Repeated stimuli of both types significantly facilitated reaction times versus initial presentations, demonstrating perceptual and semantic repetition priming. There was also repetition suppression of fMRI activity within overlapping temporal, premotor, and prefrontal regions of the auditory "what" pathway. Importantly, the magnitude of suppression effects was equivalent for both physically identical and semantically related exemplars. That the degree of repetition suppression was irrespective of whether or not both perceptual and semantic information was repeated is suggestive of a degree of acoustically independent semantic analysis in how object representations are maintained and retrieved.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Our current knowledge of the general factor requirement in transcription by the three mammalian RNA polymerases is based on a small number of model promoters. Here, we present a comprehensive chromatin immunoprecipitation (ChIP)-on-chip analysis for 28 transcription factors on a large set of known and novel TATA-binding protein (TBP)-binding sites experimentally identified via ChIP cloning. A large fraction of identified TBP-binding sites is located in introns or lacks a gene/mRNA annotation and is found to direct transcription. Integrated analysis of the ChIP-on-chip data and functional studies revealed that TAF12 hitherto regarded as RNA polymerase II (RNAP II)-specific was found to be also involved in RNAP I transcription. Distinct profiles for general transcription factors and TAF-containing complexes were uncovered for RNAP II promoters located in CpG and non-CpG islands suggesting distinct transcription initiation pathways. Our study broadens the spectrum of general transcription factor function and uncovers a plethora of novel, functional TBP-binding sites in the human genome.
Resumo:
BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
The majority (60 %) of the soils in the Venezuelan Andes are Inceptisols, a large percentage of which are classified as Dystrustepts by the US Soil Taxonomy, Second Edition of 1999. Some of these soils were classified as Humitropepts (high organic - C-OC-soils) and Dystropepts by the Soil Taxonomy prior to 1999, but no equivalent large group was created for high-OC soils in the new Ustepts suborder. Dystrusepts developed on different materials, relief and vegetation. Their properties are closely related with the parent material. Soils developed on transported deposits or sediments have darker and thicker A horizons, a slightly acid reaction, greater CEC and OC contents than upland slope soils. Based on the previous classification into large groups (Humitropepts and Dystropepts) we found that: Humitropepts have a slightly less acid and higher values of CEC than Dystropepts. These properties or characteristics seem to be related to the fact that Humitropepts have a higher clay and OC content than the Dystropepts. Canonical discrimination analysis showed that the variables that discriminate the two great soil groups from each other are OC and silt. Data for Humitropepts are grouped around the OC vector (defining axis 3, principal component analysis), while Dystropepts are associated with the clay and sand vectors, with significant correlation. Given the importance of OC for soil properties, we propose the creation of a new large group named Humustepts for the order Inceptisol, suborder Ustepts.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.