951 resultados para mammalian reservoirs
Resumo:
Paracoccidioides brasiliensis yeast cells can enter mammalian cells and may manipulate the host cell environment to favour their own growth and survival. Moreover, fibronectin and several other host extracellular matrix proteins are recognized by various components of the yeast cell extracts. The present study was designed to isolate and characterize a fibronectin-binding protein from P. brasiliensis. We also compared P. brasiliensis strain 18, tested before (Pb18a) and after (Pb18b) animal passage, in relation to its adhesion and invasion processes. Extracts from both samples, when cultured on blood agar solid medium, showed higher levels of protein expression than when the same samples were cultured on Fava-Netto solid medium, as demonstrated by two-dimensional electrophoresis and SDS-PAGE. Also, both Pb18a and Pb18b exhibited stronger adhesion to A549 epithelial cells when cultured on blood agar medium than when cultured on Fava-Netto medium. Ligand affinity binding assays revealed a protein of 54 kDa and pl 5.6 in P. brasiliensis cell-free extracts with the properties of a fibronectin-binding adhesin, which was characterized by tryptic digestion and mass spectroscopy as a homologue of enolase from P. brasiliensis. Antibody raised against this 54 kDa protein abolished 80 % of P. brasiliensis adhesion to A549 epithelial cells. Our results demonstrate that P. brasiliensis produces a fibronectin-binding adhesin, irrespective of the culture medium, and that this activity can be inhibited by a specific antibody and is involved in the adhesion of the fungus to pulmonary epithelial cells.
Resumo:
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 mu g ml(-1) saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min(-1). Saponin concentrations up to 150 mu g ml(-1) and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 mu g ml(-1) saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 mu g ml(-1) for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min(-1) in the presence of 150 mu g ml(-1) saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 mu M Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 mu m) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 mu g ml(-1) saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Resumo:
Tubercidin (TUB) is an adenosine analog with potent antiparasite action, unfortunately associated with severe host toxicity. Prevention of TUB toxicity can be reached associating nitrobenzylthioinosine (NBMPR), an inhibitor of the purine nucleoside transport, specifically target to the mammal cells. It was demonstrated that this nucleoside transport inhibitor has no significant effect in the in vitro uptake of TUB by Schistosoma mansoni and Trypanosoma gambiense. Seeking to evaluate if the association of these compounds is also effective against leishmania, we analyzed the TUB-NBMPR combined treatment in in vitro cultures of promastigote forms of Leishmania (L.) amazonensis, Leishmania (L.) chagasi, Leishmania (L.) major, and Leishmania (V.) braziliensis as well as in cultures of amastigote forms of L. (L.) amazonensis, mice macrophages infected with L. (L.) amazonensis, and in vivo tests in BALB/c mice infected with L. (L.) amazonensis. We demonstrated that TUB-NBMPR combined treatment can be effective against leishmania cells protecting mammalian cells from TUB toxicity.
Resumo:
Background: Versutoxin (delta-ACTX-Hv1) is the major component of the venom of the Australian Blue Mountains funnel web spider, Hadronyche versuta. delta-ACTX-Hv1 produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels; delta-ACTX-Hv1 is therefore a useful tool for studying sodium channel function. We have determined the three-dimensional structure of delta ACTX-Hv1 as the first step towards understanding the molecular basis of its interaction with these channels. Results: The solution structure of delta-ACTX-Hv1, determined using NMR spectroscopy, comprises a core beta region containing a triple-stranded antiparallel beta sheet, a thumb-like extension protruding from the beta region and a C-terminal 3(10) helix that is appended to the beta domain by virtue of a disulphide bond. The beta region contains a cystine knot motif similar to that seen in other neurotoxic polypeptides. The structure shows homology with mu-agatoxin-l, a spider toxin that also modifies the inactivation kinetics of vertebrate voltage-gated sodium channels. More surprisingly, delta-ACTX-Hv1 shows both sequence and structural homology with gurmarin, a plant polypeptide. This similarity leads us to suggest that the sweet-taste suppression elicited by gurmarin may result from an interaction with one of the downstream ion channels involved in sweet-taste transduction. Conclusions: delta-ACTX-Hv1 shows no structural homology with either sea anemone or alpha-scorpion toxins, both of which also modify the inactivation kinetics of voltage-gated sodium channels by interacting with channel recognition site 3. However, we have shown that delta-ACTX-Hv1 contains charged residues that are topologically related to those implicated in the binding of sea anemone and alpha-scorpion toxins to mammalian voltage-gated sodium channels, suggesting similarities in their mode of interaction with these channels.
Resumo:
Although dogs are considered the main domestic reservoirs for Visceral Leishmaniosis (VL), which is caused in the Americas by Leishmania chagasi, infected cats have also been recently found in endemic areas of several countries and became a public health concern. Accordingly, the purpose of this study was to evaluate cats with dermatologic lesions from an endemic area of VL and the natural infection of L. chagasi. A total of 55 cats were selected between April 2008 and November 2009 from two major animal shelters of Aracatuba, Southeastern Brazil. All cats underwent general and dermatologic examinations, followed by direct parasitological examination of lymphoid organs, immunosorbent assay (ELISA) and indirect immunofluorescence (IFAT). In addition, detection of amastigotes was performed by immunohistochemistry (IHC) in skin lesions of all cats. VL was diagnosed in 27/55 (49.1%) cats with dermatological problems. Amastigotes were found in lymphoid organs of 10/27 (37.0%) cats; serology of 14/27 (51.9%), 6/27 (22.2%) and 5/27 (18.5%) cats was positive for ELISA, IFAT and both, respectively. The IHC identified 9/27 (33.3%) cats; 5/27 (18.5%) were positive only for IHC and therefore increased the overall sensitivity. Specific FIV antibodies were found in 6/55(10.9%) cats, of which 5/6 (83.3%) had leishmaniosis. Real time PCR followed by amplicon sequencing successfully confirmed L chagasi infection. In conclusion, dermatological lesions in cats from endemic areas was highly associated to visceral leishmaniosis, and therefore skin IHC and differential diagnosis of LV should be always conducted in dermatological patients in such areas. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background/aim Regulation of apoptosis in non-alcoholic fatty liver disease (NAFLD) has been a theme of growing debate. Although no other study assessed the role of survivin in NAFLD, its expression has been reported in hepatic carcinogenesis because of other aetiological factors with relevant discrepancies. The aim of this study was to assess the pattern of survivin immunoexpression by tissue microarray along the whole spectrum of NAFLD, including non-alcoholic steatohepatitis (NASH)-related hepatocelular carcinoma (HCC). Methods Liver biopsies from 56 patients with NAFLD were evaluated: 18 with steatosis, 21 non-cirrhotic NASH, 10 NASH-related cirrhosis, seven NASH-related HCC, as compared with 71 HCC related to other causes and with 12 normal livers. Results Survivin immunoexpression in NAFLD was restricted to cytoplasm and was found to be progressively lower in advanced stages, including cirrhosis and HCC: steatosis vs NASH-related cirrhosis (P=0.0243); steatosis vs NASH-related HCC (P=0.0010); NASH vs NASH-related cirrhosis (P=0.0318); and NASH vs NASH-related HCC (P=0.0007), thus suggesting a deregulation of apoptosis from NAFLD towards HCC. Interestingly, survivin immunoreactivity in NASH-related HCC was also found to be significantly lower than in HCC related to other causes (P < 0.05). Remarkably, nuclear staining for survivin was not detected in any case of NAFLD, contrasting to its presence in all other cases of HCC. Conclusions Survivin immunoexpression in NASH-related HCC is herein originally found substantially different than in HCC related to other causes, thus requiring further studies to elucidate the role of survivin in human NAFLD progression.
Resumo:
We report our results of orthotopic ileal neobladder after radical cystectomy with prostatic adenomectomy with regard to urinary continence, sexual outcome and disease control. Between March 2003 and July 2004, 22 men with bladder transitional cell carcinoma (mean age 65.0) were analyzed. They underwent radical cystectomy with prostatic adenomectomy with preservation of the prostatic capsule, seminal vesicles and orthotopic ileal neobladder. Urinary continence was assessed after 2 days, 2 months, 6 months and 1 year. Preservation of sexual function was defined as the ability to have sexual intercourse and was assessed after 2-, 6-, and 12-months postoperatively. Overall survival and cancer-specific survival were assessed. Median postoperative follow-up was 60 months. Daytime and nighttime urinary continence after 48 h was 47 and 14%, respectively. After 2, 6 and 12 months, these rates were 74 and 16%, 85 and 26%, and 94 and 31%, respectively. Sexual intercourse was achieved in 69% of patients. Overall survival rate was 68%, and cancer-specific survival rate was 73%. Overall survival rates according to pathologic stage for pT0, pT1, pT2 and pT3 were 100, 60, 71 and 57%, and cancer-specific survival were 100, 80, 71 and 57%, respectively. Urinary continence and sexual function achieved by radical cystectomy with prostatic adenomectomy with orthotopic ileal neobladder seem to be similar to those achieved by the conventional technique with satisfactory oncologic results.
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
The trematode Schistosoma mansoni is the primary cause of schistosomiasis, a devastating neglected tropical disease that affects 200 million individuals. Identifying novel therapeutic targets for the treatment of schistosomiasis is therefore of great public interest. The catecholamines norepinephrine (NE) and dopamine (DA) are essential for the survival of the parasite as they cause muscular relaxation and a lengthening in the parasite and thereby control movement. Here we characterize a novel dopamine/norepinephrine transporter (SmDAT) gene transcript, from S. mansoni. The SmDAT is expressed in the adult form and in the sporocyst form (infected snails) of the parasite, and also in the egg and miracidium stage. It is absent in the cercariae stage but curiously a transcript missing the exon encoding transmembrane domain 8 was identified in this stage. Heterologous expression of the cDNA in mammalian cells resulted in saturable, dopamine transport activity with an apparent affinity for dopamine comparable to that of the human dopamine transporter. Efflux experiments reveal notably higher substrate selectivity compared with its mammalian counterparts as amphetamine is a much less potent efflux elicitor against SmDAT compared to the human DAT. Pharmacological characterization of the SmDAT revealed that most human DAT inhibitors including psychostimulants such as cocaine were significantly less potent in inhibiting SmDAT. Like DATs from other simpler organisms the pharmacology for SmDAT was more similar to the human norepinephrine transporter. We were not able to identify other dopamine transporting carriers within the completed parasite genome and we hypothesize that the SmDAT is the only catecholamine transporter in the parasite and could be responsible for not only clearing DA but also NE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: A DNA vaccine (pVAXhsp65) containing the gene of a heat-shock protein (hsp65) from Mycobacterium leprae showed high immunogenicity and protective efficacy against tuberculosis in BALB/c mice. A possible deleterious effect related to autoimmunity needed to be tested because hsp65 is highly homologous to the correspondent mammalian protein. In this investigation we tested the effect of a previous immunization with DNAhsp65 in the development of experimental autoimmune encephalomyelitis (EAE), a rat model of multiple sclerosis. Methods: Female Lewis rats were immunized with 3 pVAXhsp65 doses by intramuscular route. Fifteen days after the last DNA dose the animals were evaluated for specific immunity or submitted to induction of EAE. Animals were evaluated daily for weight loss and clinical score, and euthanized during the recovery phase to assess the immune response and inflammatory infiltration at the central nervous system. Results: Immunization with pVAXhsp65 induced a specific immune response characterized by production of IgG(2b) anti-hsp65 antibodies and IFN-gamma secretion. Previous immunization with pVAXhsp65 did not change EAE clinical manifestations (weight and clinical score). However, the vaccine clearly decreased brain and lumbar spinal cord inflammation. In addition, it downmodulated IFN-gamma and IL-10 production by peripheral lymphoid organs. Conclusion: Our data demonstrated that this vaccine does not trigger a deleterious effect on EAE development and also points to a potential protective effect. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Crotamine, one of the main toxic components of Crotalus durissus terrificus venom, is a small non-enzymatic basic polypeptide, which causes hind limb paralysis and necrosis of muscle cells. it is well-known that several toxins penetrate into the cytosol through endocytosis, although in many cases the mechanism by which this occurs has not been fully investigated. Recently, using low concentrations of crotamine, we demonstrated the uptake of this toxin into actively proliferative cells via endocytosis, an event that ensues crotamine binding to cell membrane heparan sulfate proteoglycans. Thus, crotamine can be regarded as a cell-penetrating peptide that, additionally, has been shown to be able of delivering some biologically active molecules into various cells. Herein, we investigate one of the mechanisms by which crotamine exerts its cytotoxic effects by following its uptake into highly proliferative cells, as CHO-K1 cells. Crotamine accumulation in the acidic endosomal/lysosomal vesicles was observed within 5 min after treatment of these cells with a cytotoxic concentration of this toxin, a value determined here by classical MTT assay. This accumulation caused disruption of lysosomal vesicles accompanied by the leakage of these vesicles contents into the cytosol. This lysosomal lysis also promoted the release of cysteine cathepsin and an increase of caspase activity in the cytoplasm. This chain of events seems to trigger a cell death process. Overall, our data suggest that lysosomes are the primary targets for crotamine cytotoxicity, a proposal corroborated by the correlation between both the kinetics and concentration-dependence of crotamine accumulation in lysosome compartments and the cytotoxic effects of this protein in CHO-K1 cells. Although crotamine is usually regarded as a myotoxin, we observed that intraperitoneal injection of fluorescently labeled crotamine in living mice led to significant and rapid accumulation of this toxin in the cell cytoplasm of several tissues, suggesting that crotamine cytotoxicity might not be restricted to muscle cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Oropouche (OROV) is a single-stranded RNA arbovirus of the family Bunyaviridae, genus Orthobunyavirus, which has caused over half a million cases of febrile illness in Brazil in the past 30 years. OROV fever has been registered almost exclusively in the Amazon region, but global warming, deforestation and redistribution of vectors and animal reservoirs increases the risk of Oropouche virus emergence in other areas. OROV causes a cytolytical infection in cultured cells with characteristic cytopathic effect 48 h post-infection. We have studied the mechanisms of apoptosis induced by OROV in HeLa cells and found that OROV causes DNA fragmentation detectable by gel electrophoresis and by flow cytometric analysis of the Sub-G1 population at 36 h post-infection. Mitochondrial release of cytochrome C and activation of caspases 9 and 3 were also detected by western blot analysis. Lack of apoptosis induced by UV-inactivated OROV reveals that virus-receptor binding is not sufficient to induce cell death. Results obtained in cells treated with chloroquine and cycloheximide indicated that viral uncoating and replication are required for apoptosis induction by OROV. Furthermore, treatment of the cells with pan-caspase inhibitor prevented OROV-induced apoptosis without affecting virus progeny production. The results show that OROV infection in vitro causes apoptosis by an intracellular pathway involving mitochondria, and activated by a mechanism dependent on viral replication and protein synthesis. (C) 2010 Elsevier B.V. All rights reserved.