883 resultados para load balancing
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A discussion of how to promote employability within the curriculum
Resumo:
A transversal-load sensor based on the local pressure-induced refractive index change in a chirped fiber Bragg grating (CFBG) is proposed. The local pressure induced refractive index change in the touch point can generate a main transmission peak and several subpeaks on the long wavelength side of the reflection band of the CFBG. The difference of the wavelength shifts for the main transmission peak and the first subpeak is used to measure transversal-load with temperature compensation capability.
Resumo:
This paper draws upon the findings of an empirical study comparing the expectations and concerns of engineering students with students enrolled on business and management programs. It argues that whilst the two groups of students have very similar expectations, motivations and concerns before their start their studies, once at university, engineering students are twice as likely to drop-out than are their compatriots in business studies. Drawing upon the study findings, recommendations are made as to what might be done to counteract this. The conclusion argues that there is a need for more in-depth research to be conducted in this area in order to identify the reasons behind the different attrition rates and to further enhance engineering undergraduate experience.
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.
Resumo:
Drawing on a year-long ethnographic study of reinsurance trading in Lloyd’s of London, this paper makes three contributions to current discussions of institutional complexity. First, we shift focus from purposeful organizational responses to institutional complexity to the everyday practices by which individuals collectively address competing demands on their work. Based on our findings, we develop a model of how individuals can balance conflicting institutional demands through a set of four interrelated practices, labeled segmenting, switching, bridging, and demarcating. Second, moving beyond the dominant focus on contradiction between logics, we show how these practices comprise a system of conflicting-yet-complementary logics, through which actors are able to both work within contradictions, whilst also exploiting the benefits of interdependent logics. Third, in contrast to most studies of newly formed hybrids and/or novel complexity, our focus on a long-standing context of institutional complexity, shows how balancing logics can become a matter of settled complexity, enacted routinely within everyday practice.
Resumo:
To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities.
Resumo:
Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A transversal-load sensor based on the local pressure-induced refractive index change in a chirped fiber Bragg grating (CFBG) is proposed. The local pressure induced refractive index change in the touch point can generate a main transmission peak and several subpeaks on the long wavelength side of the reflection band of the CFBG. The difference of the wavelength shifts for the main transmission peak and the first subpeak is used to measure transversal-load with temperature compensation capability.
Resumo:
A chirped moiré fiber Bragg grating has been demonstrated to be capable of measuring the magnitude, position, and footprint of a transverse load. The device provides an average spatial resolution of 164 μm and has a load accuracy of 0.15 N/mm, or 50 με. © 2004 Optical Society of America.
Resumo:
We demonstrate the sensitivity of Bragg gratings in a multicore fiber to transverse load. The Bragg peaks are split because of stress-induced birefringence, the magnitude of which depends upon the load and grating position relative to the load axis. Experiments show that a set of gratings in a four-core fiber can measure a load axis angle to ±5° and a load magnitude to ±15 N m-1 up to 2500 N m-1. We consider alternative designs of multicore fiber for optimal load sensing and compare experimental and modeled data. © 2005 Optical Society of America.
Resumo:
Drawing on a year-long ethnographic study of reinsurance trading in Lloyd’s of London, this paper makes three contributions to current discussions of institutional complexity. First, we shift focus away from structural and relatively static organizational responses to institutional complexity and identify three balancing mechanisms - segmenting, bridging, and demarcating - which allow individuals to manage competing logics and their shifting salience within their everyday work. Second, we integrate these mechanisms in a theoretical model that explains how individuals can continually keep coexisting logics, and their tendencies to either blend or disconnect, in a state of dynamic tension which makes them conflicting-yet-complementary logics. Our model shows how actors are able to dynamically balance coexisting logics, maintaining the distinction between them, whilst also exploiting the benefits of their interdependence. Third, in contrast to most studies of newly formed hybrids and/or novel complexity our focus on a long-standing context of institutional complexity shows how institutional complexity can itself become institutionalized and routinely enacted within everyday practice.
Resumo:
The current state of knowledge and understanding of the long fatigue crack propagation behavior of nickel-base superalloys are reviewed, with particular emphasis on turbine disk materials. The data are presented in the form of crack growth rate versus stress intensity factor range curves, and the effects of such variables as microstructure, load ratio, and temperature in the near-threshold and Paris regimes of the curves, are discussed.