971 resultados para linear measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the inclusion of ceramic particles in polythene material on the response to erosion due to impingement by sand particles at three angles is investigated. It is seen that erosion resistance varies with ceramic inclusions. The work also considers the limitations posed by the system in adopting weight change measurements as a measure to follow erosive wear owing to the softer nature of the matrix material. Consequently, the investigation looks at two other experimental parameter, that can readily be measured to quantify erosion. Of the two approaches. the advantages of following wear through measuring linear dimension of the resulting crater is stressed in this work. The study also highlights the problems associated in assessing the depth of the crater as a parameter to express the extent of erosion owing to the phenomenon of material flow suggested and schematically illustrated in the work. Corroborative evidence for this flow behaviour through scanning electron microscopic studies is presented. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By reacting cadmium salts with H2SO4 in the presence of organic amines or directly with amine sulfates under hydrothermal conditions, it has been possible to prepare three linear cadmium sulfates of linarite topology, with the compositions [H3N(CH2)(2)NH3](2)[CdCl2(SO4)][SO4].H2O, I, [HN(CH2)(6)NH][CdBr2(SO4)], II, [HN(CH2)(6)NH][CdCl2-(SO4)], III. A layered cadmium sulfate of composition [H3N(CH2)(3)NH3][Cd-2(H2O)(2)(SO4)(3)], IV, has also been obtained. These sulfates are the first examples of a family of organically templated metal sulfates with interesting structural features. In the linarite chains, the CdX4O2 (X = Cl, Br) octahedron shares two trans-edges to form an [Mphi(4)] (phi = anionic ligand) chain decorated by the SO4 tetrahedron that adopts a staggered arrangement on either side of the chain. IV is constructed by the fusion of four-membered ring ladders involving edge sharing between the sulfate tetrahedron and metal octahedron. IV appears to be the first member of a family of organically templated metal sulfates containing an octahedral-tetrahedral 2D net wherein the sulfate tetrahedron is connected at all four corners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the properties of a one-dimensional lattice model of a driven system with two species of particles in which the mobility of one species depends on the density of the other. This model was introduced by Lahiri and Ramaswamy (Phys. Rev. Lett., 79, 1150 (1997)) in the context of sedimenting colloidal crystals, and its continuum version was shown to exhibit an instability arising from linear gradient couplings. In this paper we review recent progress in understanding the full phase diagram of the model. There are three phases. In the first, the steady state can be determined exactly along a representative locus using the condition of detailed balance. The system shows phase separation of an exceptionally robust sort, termed strong phase separation, which survives at all temperatures. The second phase arises in the threshold case where the first species evolves independently of the second, but the fluctuations of the first influence the evolution of the second, as in the passive scalar problem. The second species then shows phase separation of a delicate sort, in which long-range order coexists with fluctuations which do not damp down in the large-size limit. This fluctuation-dominated phase ordering is associated with power law decays in cluster size distributions and a breakdown of the Porod law. The third phase is one with a uniform overall density, and along a representative locus the steady state is shown to have product measure form. Density fluctuations are transported by two kinematic waves, each involving both species and coupled at the nonlinear level. Their dissipation properties are governed by the symmetries of these couplings, which depend on the overall densities. In the most interesting case,, the dissipation of the two modes is characterized by different critical exponents, despite the nonlinear coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and thermopower are studied in the conducting polymer polypyrrole doped with varying levels of the dopant hexafluoro phosphate (PF6). A single sample is prepared by galvanostatic electrochemical polymerization at -40 degreesC. From this sample, six samples having different dopant levels and correspondingly different conductivity are prepared by dedoping. Low temperature d.c. electrical conductivity measurement shows the metal-insulator transition from fully doped sample to dedoped samples. On the metallic side the data are fitted to the localization-interaction model. In critical regime, it follows the power law. On the insulating side, it is variable range hopping. Thermopower measurements are done in the temperature range 300 K to 20 K. Thermopower is linear for samples on the metallic side and becomes more and more non-linear on the insulating side. It is described using a combination of the linear metallic term and the non-linear hopping term. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) have been established by equilibration of samples at T = 1223 K, and phase identification after quenching by optical and scanning electron microscopy (OM, SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRPD). Two oxide phases were stable along the binary Tb-O: Tb2O3+x, a phase of variable composition, and Tb7O12 at T = 1223K. The oxide PdO was not stable at this temperature. Only one ternary oxide Tb2Pd2O5 was identified in the Tb-Pd-O system. No ternary compound was found in the system Er-Pd-O at T = 1223K. However, the compound Er2Pd2O5 could be synthesized at T = 1075 K by the hydrothermal route. In both systems, the alloys and inter-metallic compounds were all found to be in equilibrium with the lanthanide sesquioxide Ln(2)O(3) (where Ln is either Tb or Er). Two solid-state cells, each incorporating a buffer electrode, were designed to measure the Gibbs energy of formation of the ternary oxides, using yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas as the reference electrode. Electromotive force measurements were conducted in the temperature range (900-1275) K for Th-Pd-O system, and at temperatures from (900-1075) K for the system Er-Pd-O. The standard Gibbs energy of formation Delta(f)G(m)degrees,, of the inter-oxide compounds from their component binary oxides Ln(2)O(3) and PdO are represented by equations linear in temperature. Isothermal chemical potential diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) are developed based on the thermodynamic information. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface properties of coal-pyrite play a major role in determining its separation from coal in processes such as flotation. The solution pH is an important parameter in determining the surface properties of both coal and coal-pyrite such as surface free energy and zeta-potential. In the present investigation, the effect of pH on the surface free energy of pyrites from different sources was studied. The surface free energy of solids is made up of two components, i.e. the dispersive surface free energy and the acid-base interaction energy. Various methods have been used by previous researchers to evaluate these two components for different solids. In the present study, a new approach was developed and used to study the surface free energy of pyrite surfaces. Results indicate that the dispersion surface free energy of various pyrites is independent of pH while the acid-base interaction energy is strongly dependent on the pH. The acid-base interaction energy is different for each pyrite sample and also the change with pH varies with the type of pyrite. Coal-pyrite was found to be more hydrophobic than ore-pyrite which may be attributed to the presence of carbon in coal-pyrites. The acid-base interaction energy varied little with pH for coal pyrites than ore-pyrite. Comparison of acid-base interaction energy with zeta-potential measurements shows a good correlation between the minimum in acid-base interaction energy and the pHpzc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three one-dimensional zinc phosphates, [C5N2H14][Zn(HPO4)2], I, [C10N4H26][Zn(HPO4)2].2H2O II, and [C4N2H6]2[Zn(HPO4)], III, have been prepared employing hydro/solvothermal methods in the presence of organic amines. While I and II consist of linear chains of corner-shared four-membered rings, III is a polymeric wire where the amine molecule is directly bonded to the metal center. The wire, as well as the chain in these structures, are held together by hydrogen bond interactions involving the amine and the framework oxygens. The polymeric zinc phosphate with wire-like architecture, III, is only the second example of such architecture. Crystal data: I, monoclinic, P21/c (no. 14), a=8.603(2), b=13.529(2), c=10.880(1) Å, β=94.9(1)°, V=1261.6(1) Å3, Z=4, ρcalc.=1.893 gcm−3, μ(MoKα)=2.234 mm−1, R1=0.032, wR2=0.086, [1532 observed reflections with I>2σ(I)], II, orthorhombic, Pbca (no. 61), a=8.393(1), b=15.286(1), c=22.659(1) Å, V=2906.9(2) Å3, Z=8, ρcalc.=1.794 gcm−3, μ(MoKα)=1.957 mm−1, R1=0.055, wR2=0.11, [1565 observed reflections with I>2σ(I) and III, monoclinic, P21/c (no. 14), a=8.241(1), b=13.750(2), c=10.572(1) Å, β=90.9(1)°, V=1197.7(2) Å3, Z=4, ρcalc.=1.805 gcm−3, μ(MoKα)=2.197 mm−1, R1=0.036, wR2=0.10, [1423 observed reflections with I>2σ(I)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the existence of a quadratic Lyapunov function V = x′P(t)x for an exponentially stable linear system with varying coefficients described by the vector differential equation S0305004100044777_inline1 The derivative dV/dt is allowed to be strictly semi-(F) and the locus dV/dt = 0 does not contain any arc of the system trajectory. It is then shown that the coefficient matrix A(t) of the exponentially stable sy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter=9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 108. Under these conditions the convection is turbulent, and the time-averaged velocity at any point is ‘zero’. The Reynolds number based on the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6–7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are much higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection for similar density differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report our studies of the linear and nonlinear rheology of aqueous solutions of the surfactant cetyl trimethylammonium tosylate (CTAT) with varying amounts of sodium chloride (NaCl). The CTAT concentration is fixed at 42 mM, and the salt concentration is varied between 0 and 120 mM. On increasing the salt (NaCl) concentration, we see three distinct regimes in the zero-shear viscosity and the high-frequency plateau modulus data. In regime 1, the zero-shear viscosity shows a weak increase with salt concentration due to enhanced micellar growth. The decrease in the zero-shear viscosities with salt concentration in regimes II and III can be explained in terms of intermicellar branching. The most intriguing feature of our data, however, is the anomalous behavior of the high-frequency plateau modulus in regime II (0.12 less than or equal to [NaCl]/[CTAT] less than or equal to 1.42). In this regime, the plateau modulus increases with an increase in NaCl concentration. This is highly interesting, since the correlation length of concentration fluctuations and hence the plateau modulus G(0) are not expected to change appreciably in the semidilute regime. We propose to explain the changes in regime II in terms of a possible unbinding of the organic counterions (tosylate) from the CTA(+) surfaces on the addition of NaCl. In the nonlinear flow curves of the samples with high salt content, significant deviations from the predictions of the Giesekus model for entangled micelles are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a magnetic study of the insulating perovskite LaMn1-xTixO3+delta (0measurements of magnetization, susceptibility, and magnetic relaxation. The Curie temperature was found to decrease with increasing content of Ti. Two distinct magnetic transitions, irreversibility, non-exponential relaxation and aging effects confirm a reentrant spin-glass state for x = 0.2. The time decay of the magnetization has an algebraic functional form for times up to 2 h. The specific heat also displays characteristic features of a spin-glass system by a linear low-temperature dependence and a broadened peak near the temperature of the reentrant transition. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many industrial casting processes, knowledge of the solid fraction evolution during the solidification process is a key factor in determining the process parameters such as cooling rate, stirring intensity and in estimating the total solidification time. In the present work, a new method of estimating solid fraction is presented, which is based on calorimetric principles. In this method, the cooling curve data at each point in the melt, along with the thermal boundary conditions, are used to perform energy balance in the mould, from which solid fraction generation during any time interval can be estimated. This method is applied to the case of a rheocasting process, in which Al-Si alloy (A356 alloy) is solidified by stirring in a cylindrical mould placed in the annulus of a linear electromagnetic stirrer. The metal in the mould is simultaneously cooled and stirred to produce a cylindrical billet with non-dendritic globular microstructure. Temperature is measured at key locations in the mould to assess the various heat exchange processes prevalent in the mould and to monitor the solidification rate. The results obtained by energy balance method are compared with those by the conventional procedure of calculating solid fraction using the Schiel equation.