965 resultados para linear machine modeling
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The effect of varying separator membrane physical parameters such as degree of porosity, tortuosity and thickness, on battery delivered capacity was studied in order to optimize performance of lithium-ion batteries. This was achieved by a theoretical mathematical model relating the Bruggeman coefficient with the degree of porosity and tortuosity. The inclusion of the separator membrane in the simulation model of the battery system does not affect the delivered capacity of the battery. The ionic conductivity of the separator and consequently the delivered capacity values obtained at different discharge rates depends on the value of the Bruggeman coefficient, which is related with the degree of porosity and tortuosity of the membrane. Independently of scan rate, the optimal value of the degree of porosity is above 50% and the separator thickness should range between 1 μm at 32 μm for improved battery performance.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
We investigate the low-energy electronic transport across grain boundaries in graphene ribbons and infinite flakes. Using the recursive Green’s function method, we calculate the electronic transmission across different types of grain boundaries in graphene ribbons. We show results for the charge density distribution and the current flow along the ribbon. We study linear defects at various angles with the ribbon direction, as well as overlaps of two monolayer ribbon domains forming a bilayer region. For a class of extended defect lines with periodicity 3, an analytic approach is developed to study transport in infinite flakes. This class of extended grain boundaries is particularly interesting, since the K and K0 Dirac points are superposed.
Resumo:
Pirarucu (Arapaima gigas) has been of the most important natural fishing resources of the Amazon region. Due to its economic importance, and the necessity to preserve the species hand, field research concerning the habits and behavior of the pirarucu has been increasing for the last 20 years. The aim of this paper is to present a mathematical model for the pirarucu population dynamics considering the species peculiarities, particularly the male parental care over the offspring. The solution of the dynamical systems indicates three possible equilibrium points for the population. The first corresponds to extinction; the third corresponds to a stable population close to the environmental carrying capacity. The second corresponds to an unstable equilibrium located between extinction and full use of the carrying capacity. It is shown that lack of males’ parental care closes the gap between the point corresponding to the unstable equilibrium and the point of stable non-trivial equilibrium. If guarding failure reaches a critical point the two points coincide and the population tends irreversibly to extinction. If some event tends to destabilize the population equilibrium, as for instance inadequate parental care, the model responds in such a way as to restore the trajectory towards the stable equilibrium point avoiding the route to extinction. The parameters introduced to solve the system of equations are partially derived from limited but reliable field data collected at the Mamirauá Sustainable Development Reserve (MSDR) in the Brazilian Amazonian Region.
Resumo:
Objective:Innovative moments (IMs) are moments in the therapeutic dialog that constitute exceptions toward the client's problems. These narrative markers of meaning transformation are associated with change in different models of therapy and diverse diagnoses. Our goal is to test if IMs precede symptoms change, or, on the contrary, are a mere consequence of symptomatic 15 change. Method: For this purpose, IMs and symptomatology (Outcome Questionnaire-10.2) were assessed at every session in a sample of 10 cases of narrative therapy for depression. Hierarchical linear modeling was conducted to explore whether (i) IMs in a given session predict patients' symptoms in the following session and/or (ii) symptoms in a given session predict IMs in the next session. Results: Results suggested that IMs are better predictors of symptoms than the reverse. Conclusions: These results are discussed considering the contribution of meanings and narrative processes' changes to symptomatic improvement.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Engenharia de Eletrónica e de Computadores