861 resultados para language learning websites
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
The relevance of explicit instruction has been well documented in SLA research. Despite numerous positive findings, however, the issue continues to engage scholars worldwide. One issue that was largely neglected in previous empirical studies - and one that may be crucial for the effectiveness of explicit instruction - is the timing and integration of rules and practice. The present study investigated the extent to which grammar explanation (GE) before practice, grammar explanation during practice, and individual differences impact the acquisition of L2 declarative and procedural knowledge of two grammatical structures in Spanish. In this experiment, 128 English-speaking learners of Spanish were randomly assigned to four experimental treatments and completed comprehension-based task-essential practice for interpreting object-verb (OV) and ser/estar (SER) sentences in Spanish. Results confirmed the predicted importance of timing of GE: participants who received GE during practice were more likely to develop and retain their knowledge successfully. Results further revealed that the various combinations of rules and practice posed differential task demands on the learners and consequently drew on language aptitude and WM to a different extent. Since these correlations between individual differences and learning outcomes were the least observed in the conditions that received GE during practice, we argue that the suitable integration of rules and practice ameliorated task demands, reducing the burden on the learner, and accordingly mitigated the role of participants’ individual differences. Finally, some evidence also showed that the comprehension practice that participants received for the two structures was not sufficient for the formation of solid productive knowledge, but was more effective for the OV than for the SER construction.
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010
Resumo:
Se examina la experiencia de los estudiantes y los profesores de dos grupos de un curso de Elocución con el uso de las Tecnologías de la Información y la Comunicación (TICs), para mejorar sus habilidades de expresión oral en inglés. Se presenta el diseño del curso y la metodología en la cual se fundamentó, así como las apreciaciones de los trabajos de estos a lumnos a la hora de mejorar las habilidades comunicativas orales por medio del enfoque constructivista. Se incluyen recomendaciones para poner en práctica esta metodología.A description is provided here of the experience of the students and teachers of two Elocution courses in which Information and Communication Technologies (ICTs) were used to improve oral communication skills in English. Reference is made to the design of the course and the methodology it is based on, together with some insights of the assignments that students did to improve their English speaking skills through the constructivism approach. Recommendations are also provided for others interested in using this type of methodology.
Resumo:
El presente artículo plantea el beneficio de utilizar recursos en línea en la enseñanza del inglés. Destaca que los estudiantes fortalecerán, no solo el uso de la lengua meta, sino también el de los recursos tecnológicos. Para ejemplificar, se presenta una serie de ejercicios en línea que desarrollan diversas habilidades de la lengua meta como también las ventajas y desventajas del uso de los mismos. Por último, se comparten los resultados obtenidos de una encuesta aplicada sobre el uso de recursos en línea en las clases de inglés.The benefit of using online sources in the EFL class is analyzed here starting from the perspective that this helps students improve not only their use of the language but also their use of technology. Sample online exercises focusing on the development of different language skills are described here, along with the advantages and disadvantages of using online sources. Finally, the results obtained from a survey on the use of online sources in the EFL classes are presented.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^