981 resultados para lactate imaging, human tumor xenografts, head
Resumo:
Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.
Resumo:
Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.
Resumo:
We report a case series of three children with solid pseudopapillary tumor of the pancreas (SPT) in which a complete radiological work-up, including ultrasound, computed tomography scans, and MRI, has been carried out. The aim of this article is to highlight the characteristic imaging findings of SPT in the pediatric age group and to establish a correlation with typical histopathological findings of the lesion.
Resumo:
PURPOSE: To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. METHODS: Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. RESULTS: Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]-α, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. CONCLUSIONS: Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology.
Resumo:
Background: The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results: The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions: Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.
Resumo:
PURPOSE: Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN: Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS: The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS: Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.
Resumo:
Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8(+) T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.
Resumo:
There is evidence that reactive hyperemia (ie, the transient increase of blood flow above resting level after a short period of ischemia) could be negatively modulated by vasoconstrictor prostanoids. The present study tested whether pharmacological blockade of the thromboxane prostanoid receptors with the specific antagonist S18886 (terutroban) would amplify reactive hyperemia in human skin and skeletal muscle. Twenty healthy young male volunteers were enrolled in a randomized, blinded, crossover trial of oral S18886 30 mg/d for 5 days versus placebo. Reactive hyperemia was evaluated in forearm skin and skeletal muscle, after occlusion of the brachial artery with a pneumatic cuff inflated at suprasystolic pressure. Blood flow was measured with laser Doppler imaging (skin) and strain gauge venous occlusion plethysmography (muscle). On the first and last day of each treatment period, recordings of reactive hyperemia were obtained immediately before and 2 hours after drug intake. Whether in forearm muscle or skin, S18886 had no discernible effect on peak postocclusion blood flow, nor on the global hyperemic response as quantified by the area under curve. These results do not support that thromboxane prostanoid receptor activation could exert a moderating influence on reactive hyperemia in human skin and skeletal muscle, at least in young subjects.
Resumo:
By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.
Resumo:
Mapping the human auditory cortex with standard functional imaging techniques is difficult because of its small size and angular position along the Sylvian fissure. As a result, the exact number and location of auditory cortex areas in the human remains unknown. In a first experiment, we measured the two largest tonotopic areas of primary auditory cortex (PAC, Al and R) using high-resolution functional MRI at 7 Tesla relative to the underlying anatomy of Heschl's gyrus (HG). The data reveals a clear anatomical- functional relationship that indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplication and complete duplication). Human PAC tonotopic areas are oriented along an oblique posterior-to-anterior axis with mirror-symmetric frequency gradients perpendicular to HG, as in the macaque. In a second experiment, we tested whether these primary frequency-tuned units were modulated by selective attention to preferred vs. non-preferred sound frequencies in the dynamic manner needed to account for human listening abilities in noisy environments, such as cocktail parties or busy streets. We used a dual-stream selective attention experiment where subjects attended to one of two competing tonal streams presented simultaneously to different ears. Attention to low-frequency tones (250 Hz) enhanced neural responses within low-frequency-tuned voxels relative to high (4000 Hz), and vice versa when at-tention switched from high to low. Human PAC is able to tune into attended frequency channels and can switch frequencies on demand, like a radio. In a third experiment, we investigated repetition suppression effects to environmental sounds within primary and non-primary early-stage auditory areas, identified with the tonotopic mapping design. Repeated presentations of sounds from the same sources, as compared to different sources, gave repetition suppression effects within posterior and medial non-primary areas of the right hemisphere, reflecting their potential involvement in semantic representations. These three studies were conducted at 7 Tesla with high-resolution imaging. However, 7 Tesla scanners are, for the moment, not yet used for clinical diagnosis and mostly reside in institutions external to hospitals. Thus, hospital-based clinical functional and structural studies are mainly performed using lower field systems (1.5 or 3 Tesla). In a fourth experiment, we acquired tonotopic maps at 3 and 7 Tesla and evaluated the consistency of a tonotopic mapping paradigm between scanners. Mirror-symmetric gradients within PAC were highly similar at 7 and 3 Tesla across renderings at different spatial resolutions. We concluded that the tonotopic mapping paradigm is robust and suitable for definition of primary tonotopic areas, also at 3 Tesla. Finally, in a fifth study, we considered whether focal brain lesions alter tonotopic representations in the intact ipsi- and contralesional primary auditory cortex in three patients with hemispheric or cerebellar lesions, without and with auditory complaints. We found evidence for tonotopic reorganisation at the level of the primary auditory cortex in cases of brain lesions independently of auditory complaints. Overall, these results reflect a certain degree of plasticity within primary auditory cortex in different populations of subjects, assessed at different field strengths. - La cartographie du cortex auditif chez l'humain est difficile à réaliser avec des techniques d'imagerie fonctionnelle standard, étant donné sa petite taille et position angulaire le long de la fissure sylvienne. En conséquence, le nombre et l'emplacement exacts des différentes aires du cortex auditif restent inconnus chez l'homme. Lors d'une première expérience, nous avons mesuré, avec de l'imagerie par résonance magnétique à haute intensité (IRMf à 7 Tesla) chez des sujets humains sains, deux larges aires au sein du cortex auditif primaire (PAC; Al et R) avec une représentation spécifique des fréquences pures préférées - ou tonotopie. Nos résultats ont démontré une relation anatomico- fonctionnelle qui définit clairement la position du PAC à travers toutes les variantes du gyrus d'Heschl's (HG). Les aires tonotopiques du PAC humain sont orientées le long d'un axe postéro-antérieur oblique avec des gradients de fréquences spécifiques perpendiculaires à HG, d'une manière similaire à celles mesurées chez le singe. Dans une deuxième expérience, nous avons testé si ces aires primaires pouvaient être modulées, de façon dynamique, par une attention sélective pour des fréquences préférées par rapport à celles non-préférées. Cette modulation est primordiale lors d'interactions sociales chez l'humain en présence de bruits distracteurs tels que d'autres discussions ou un environnement sonore nuisible (comme par exemple, dans la circulation routière). Dans cette étude, nous avons utilisé une expérience d'attention sélective où le sujet devait être attentif à une des deux voies sonores présentées simultanément à chaque oreille. Lorsque le sujet portait était attentif aux sons de basses fréquences (250 Hz), la réponse neuronale relative à ces fréquences augmentait par rapport à celle des hautes fréquences (4000 Hz), et vice versa lorsque l'attention passait des hautes aux basses fréquences. De ce fait, nous pouvons dire que PAC est capable de focaliser sur la fréquence attendue et de changer de canal selon la demande, comme une radio. Lors d'une troisième expérience, nous avons étudié les effets de suppression due à la répétition de sons environnementaux dans les aires auditives primaires et non-primaires, d'abord identifiées via le protocole de la première étude. La présentation répétée de sons provenant de la même source sonore, par rapport à de sons de différentes sources sonores, a induit un effet de suppression dans les aires postérieures et médiales auditives non-primaires de l'hémisphère droite, reflétant une implication de ces aires dans la représentation de la catégorie sémantique. Ces trois études ont été réalisées avec de l'imagerie à haute résolution à 7 Tesla. Cependant, les scanners 7 Tesla ne sont pour le moment utilisés que pour de la recherche fondamentale, principalement dans des institutions externes, parfois proches du patient mais pas directement à son chevet. L'imagerie fonctionnelle et structurelle clinique se fait actuellement principalement avec des infrastructures cliniques à 1.5 ou 3 Tesla. Dans le cadre dune quatrième expérience, nous avons avons évalués la cohérence du paradigme de cartographie tonotopique à travers différents scanners (3 et 7 Tesla) chez les mêmes sujets. Nos résultats démontrent des gradients de fréquences définissant PAC très similaires à 3 et 7 Tesla. De ce fait, notre paradigme de définition des aires primaires auditives est robuste et applicable cliniquement. Finalement, nous avons évalués l'impact de lésions focales sur les représentations tonotopiques des aires auditives primaires des hémisphères intactes contralésionales et ipsilésionales chez trois patients avec des lésions hémisphériques ou cérébélleuses avec ou sans plaintes auditives. Nous avons trouvé l'évidence d'une certaine réorganisation des représentations topographiques au niveau de PAC dans le cas de lésions cérébrales indépendamment des plaintes auditives. En conclusion, nos résultats démontrent une certaine plasticité du cortex auditif primaire avec différentes populations de sujets et différents champs magnétiques.
Resumo:
Tumor-infiltrating lymphocytes are present in a variety of tumors and play a central role in antitumor immune responses. Nevertheless, most cancers progress probably because tumors are only weakly immunogenic and develop multiple immunosuppressive mechanisms. In the present study, on head and neck squamous cell carcinoma, we found high intraepithelial infiltration of regulatory FOXP3(+) T cells, and relatively high levels of BDCA2(+) and FOXP3(+) cells in stromal (peripheral) regions of the tumors. Tumor-infiltrating (intraepithelial) FOXP3(+) T cells were significantly more frequent in patients with oropharynx and oral cavity squamous cell carcinoma and in patients without lymph node metastasis. Furthermore, arginase-II (ARG2) was expressed by 60%, inducible nitric oxide synthetase by 9%, cyclooxygenase-2 by 43%, and B-cell lymphoma 2 (BCL2) by 26% of tumors. Interestingly, the absence of ARG2 expression, enhanced stromal infiltration of CD11c(+) myeloid dendritic cells, and high numbers of FOXP3(+) T cells were each significantly associated with prolonged overall survival, and the latter two parameters were also confirmed by multivariate analysis. For disease-free survival, multivariate analysis revealed significant negative correlations with BCL2 and ARG2 expression by tumor cells. These findings shed new light on mechanisms of cancer progression, and provide rationales for therapeutic inhibition of immunosuppressive mechanisms in head and neck squamous cell carcinoma.
Resumo:
MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family designated APRIL (for a proliferation-inducing ligand). Although transcripts of APRIL are of low abundance in normal tissues, high levels of mRNA are detected in transformed cell lines, and in human cancers of colon, thyroid, and lymphoid tissues in vivo. The addition of recombinant APRIL to various tumor cells stimulates their proliferation. Moreover, APRIL-transfected NIH-3T3 cells show an increased rate of tumor growth in nude mice compared with the parental cell line. These findings suggest that APRIL may be implicated in the regulation of tumor cell growth.