999 resultados para laboratory waste
Resumo:
Phenols are widely used in many areas and commonly found as industrial by-products. A great number of agricultural and industrial activities realise phenolic compounds in the environmental. Waste phenols are produced mainly by the wood-pulp industry and during production of synthetic polymers, drugs, plastics, dyes, pesticides and others. Phenols are also released into the environmental by the degradation of pesticides with phenolic skeleton. The phenols level control is very important for the environmental protection. Amperometric biosensor has shown the feasibility to complement laboratory-based analytical methods for the determination of phenolic compounds, providing alternatives to conventional methods which have many disadvantages. This brief review considers the evolution of an approach to amperometric measurement using the catalytic properties of some enzymes for phenolic compounds monitoring.
Resumo:
La fuerte demanda de alimentos que ha tenido lugar a nivel mundial en los últimos años, ha provocadoun cambio en los sistemas de producción agraria y para el caso de la ganadera se ha pasado de lastípicas explotaciones extensivas ligadas al terreno a las granjas intensivas, en donde se ha incrementadola carga ganadera, bien aumentando el número de cabezas en pastoreo o mediante la construcción degranjas intensivas sin suelo
Resumo:
The layout design process of the packaging laboratory at Lappeenranta University of Technology is documented in this thesis. Layout planning methods are discussed in general. The systematic layout planning procedure is presented in more detail as it is utilised in the case of layout planning of the packaging laboratory. General demands for research laboratory are discussed both from the machine and product perspectives. The possibilities for commercial food processing in the laboratory are discussed from the point of view of foodstuff processing regulations and hygiene demands. The layout planning process is documented and different layout possibilities are presented. Different layout drafts are evaluated and one layout draft is developed to be the final layout of the packaging laboratory. Guideline for technical planning and implementation based on the final layout is given
Resumo:
When laboratory intercomparison exercises are conducted, there is no a priori dependence of the concentration of a certain compound determined in one laboratory to that determined by another(s). The same applies when comparing different methodologies. A existing data set of total mercury readings in fish muscle samples involved in a Brazilian intercomparison exercise was used to show that correlation analysis is the most effective statistical tool in this kind of experiments. Problems associated with alternative analytical tools such as mean or paired 't'-test comparison and regression analysis are discussed.
Resumo:
The aim of this paper is to analyze the effects of intermunicipal cooperation and privatization on the delivery costs of urban solid waste services. The results of our empirical analysis, which we conducted among a sample of very small municipalities, indicate that small towns that cooperate incur lower costs for their waste collection service. Cooperation also raises collection frequency and improves the quality of the service in small towns. By contrast, the form of production, whether it is public or private, does not result in systematic differences in costs. Interestingly, the degree of population dispersion has a significant positive relation with service costs. No evidence of scale economies is found because, it would seem, small municipalities exploit them by means of intermunicipal cooperation.
Resumo:
This work presents a detailed routine applied to the identification of unknown chemicals and wastes. 786 specimens were analyzed during 20 months. Unknown materials fell into three basic classes: (i) commercial chemicals without labels or illegible ones; (ii) laboratory synthesis products; (iii) used solvents (including mixtures). Uranium and thorium were recovered form their wastes. Unknown chemicals were mainly inorganic compounds, many of which had never been opened. Alkaline salts were dominant, but also precious metal compounds were identified. Laboratory synthesis products were organic compounds. The final destination depended on the nature of the chemical. Most organic compounds were sent to incineration; inorganic salts were distributed among several public organizations, including secondary and technical schools. The work described in this paper greatly reduced the amount of wastes that had to be sent to disposal.
Resumo:
The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.
Resumo:
The Municipal Station of Americana, SP, Brazil, treats a volume of 400 l s-1 of effluent, of domestic and textile origin, and produces about 20 t of sludge per day. The plant horseradish, which contains high amount of peroxidases, was able to decolorize this effluent in 2 h and the solid waste in 2 days, at concentrations of 10 and 50%, respectively. However, there was an increase in the toxicity for the bioassays with Hydra attenuatta, Selenastrum capricornutum and lettuce seeds, indicating formation of more toxic substances. Since horseradish showed the ability to decolorize these residues, it can be used as pre-treatment resulting in a sludge of less complex composition.
Resumo:
The transesterification procedure of triacylglycerides from soybean oil (in natura and waste oil) to give biodiesel was adapted to semi-micro laboratory scale as an additional experimental technique of nucleophilic acyl substitution for undergraduate courses in Chemistry and related areas.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
In this paper, we present procedures for the treatment and final disposal of residual solutions containing chromium, in order to evaluate the effectiveness of chemical precipitation of the metal and the potential of the glass encapsulation technique, using broken laboratory glassware. The results demonstrated that pH-values convenient for chemical precipitation are between 10 - 11. With regard to Cr(OH)3 encapsulation, the leaching and solubilization tests allowed to classify the waste as non-dangerous and non-inert. Finally, it is pointed out that the adoption of waste management practices in universities should be encouraged, helping to train professionals skilled in good laboratory practices.
Resumo:
This paper reports how laboratory projects (LP) coupled to inquiry-based learning (IBL) were implemented in a practical inorganic chemistry course. Several coordination compounds have been successfully synthesised by students according to the proposed topics by the LP-IBL junction, and the chemistry of a number of metals has been studied. Qualitative data were collected from written reports, oral presentations, lab-notebook reviews and personal discussions with the students through an experimental course with undergraduate second-year students at the Universidad Nacional de Colombia during the last 5 years. Positive skills production was observed by combining LP and IBL. Conceptual, practical, interpretational, constructional (questions, explanations, hypotheses), communicational, environmental and application abilities were revealed by the students throughout the experimental course.
Resumo:
This work presents simple routes to recover iodine compounds from oxidized laboratory chemicals and aqueous solutions (HI and KI) used in laboratory chemistry classes. These routes are based on the oxidation of iodide ions (I-) to iodine (I2) by an oxidant (H2O2) or reduction of oxidized iodine by red phosphorus or hydrazine. Both routes presented high yields. The oxidative route is of general use whereas the reductive one is appropriate for restoring original iodine reagents. Final wastes were generated in low amounts. This work is appropriate for teaching many laboratory techniques (e.g., distillation, titration and filtration) in the chemical laboratory.
Resumo:
This work presents a route for processing spent ink-jet cartridges in an experimental course. The disassembly of the cartridges requires several steps and the recognition of their different components is essential to define the best final destination (recycling, co-processing). The plastic strips were chemically processed so as to recover gold and copper. The students recognized the difficulty of processing multicomponent wastes and the importance of the chemical work under the best safety conditions; they also experienced many laboratory techniques and recognized the value of the selective collection and the reverse logistics to reach a viable commercial scale recycling.