905 resultados para lab on a chip
Resumo:
Mode of access: Internet.
Resumo:
Press release attached to verso includes: This picture ran three times. In the issue of May 2,1943, in the general supplement of Nov. 2, 1943, and on Jan. 16, 1944. May 2nd: A demonstration in the mechanical engineering laboratory is being given to these members of the engineering unit of the Army Specialized Training at the University.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Profs. J.B. Davis & Mortimer Cooley, architects? Engineering Shops from 1885-1923. Later used as West Engineering Annex 1923. Architecture Dept. in east wing 1923-1927; Survey Dept. in east wing 1927; Auto Lab in west wing; part of Auto Lab destroyed by fire 1937; rest demolished 1956. On image: Engineering Lab., U. of M., R.H. Scadin Photo, 1894. Stamp on verso: C.T. Stoner, 7668 Grand St., Dexter, Mich.
Resumo:
In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The inhibitory effects of nitrite (NO2-)/free nitrous acid (HNO2-FNA) on the metabolism of Nitrobacter were investigated using a method allowing the decoupling of the growth and energy generation processes. A lab-scale sequencing batch reactor was operated for the enrichment of a Nitrobacter culture. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population was Nitrobacter. Batch tests were carried out to assess the oxygen and nitrite consumption rates of the enriched culture at low and high nitrite levels, in the presence or absence of inorganic carbon. It was observed that in the absence of CO2, the Nitrobacter culture was able to oxidize nitrite at a rate that is 76% of that in the presence of CO2, with an oxygen consumption rate that is 85% of that measured in the presence of CO2. This enabled the impacts of nitrite/FNA on the catabolic and anabolic processes of Nitrobacter to be assessed separately. FNA rather than nitrite was likely the actual inhibitor to the Nitrobacter metabolism. It was revealed that FNA of up to 0.05 mg HNO2-N center dot L-1 (3.4 mu M), which was the highest FNA concentration used in this study, did not have any inhibitory effect on the catabolic processes of Nitrobacter. However, FNA initiated its inhibition to the anabolic processes of Nitrobacter at approximately 0.011 mg HNO2-N center dot L-1 (0.8 mu M), and completely stopped biomass synthesis at a concentration of approximately 0.023 mg HNO2-N center dot L-1 (1.6 mu M). The inhibitory effect could be described by an empirical inhibitory model proposed in this paper, but the underlying mechanisms remain to be revealed.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.
Resumo:
A chip shooter machine for electronic component assembly has a movable feeder carrier, a movable X–Y table carrying a printed circuit board (PCB), and a rotary turret with multiple assembly heads. This paper presents a hybrid genetic algorithm (HGA) to optimize the sequence of component placements and the arrangement of component types to feeders simultaneously for a chip shooter machine, that is, the component scheduling problem. The objective of the problem is to minimize the total assembly time. The GA developed in the paper hybridizes different search heuristics including the nearest-neighbor heuristic, the 2-opt heuristic, and an iterated swap procedure, which is a new improved heuristic. Compared with the results obtained by other researchers, the performance of the HGA is superior in terms of the assembly time. Scope and purpose When assembling the surface mount components on a PCB, it is necessary to obtain the optimal sequence of component placements and the best arrangement of component types to feeders simultaneously in order to minimize the total assembly time. Since it is very difficult to obtain the optimality, a GA hybridized with several search heuristics is developed. The type of machines being studied is the chip shooter machine. This paper compares the algorithm with a simple GA. It shows that the performance of the algorithm is superior to that of the simple GA in terms of the total assembly time.
Resumo:
A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.
Resumo:
Glioblastoma multiforme (GBM) is a malignant brain tumour for which there is currently no effective treatment regime. It is thought to develop due to the overexpression of a number of genes, including the epidermal growth factor receptor (EGFR), which is found in over 40% of GBM. Novel forms of treatment such as antisense therapy may allow for the specific inhibition of aberrant genes and thus they are optimistic therapies for future treatment of GBM. Oligodeoxynucleotides (ODNs) are small pieces of DNA that are often modified to increase their stability to nucleases and can be targeted to the aberrant gene in order to inhibit it and thus prevent its transcription into protein. By specifically binding to mRNA in an antisense manner, they can bring about its degradation by a variety of mechanisms including the activation of RNase H and thus have great potential as therapeutic agents. One of the main drawbacks to the utilisation of this therapy so far is the lack of techniques that can successfully predict accessible regions on the target mRNA that the ODNs can bind to. DNA chip technology has been utilised here to predict target sequences on the EGFR mRNA and these ODNs (AS 1 and AS2) have been tested in vitro for their stability, uptake into cells and their efficacy on cellular growth, EGFR protein and mRNA. Studies showed that phosphorothioate and 2'O-methyl ODNs were significantly more stable than phosphodiester ODNs both in serum and serum-free conditions and that the mechanism of uptake into A431 cells was temperature dependent and more efficient with the use of optimised lipofectin. Efficacy results show that AS 1 and AS2 phosphorothioate antisense ODNs were capable of inhibiting cell proliferation by 69% ±4% and 65% ±4.5% respectively at 500nM in conjunction with a non-toxic dose of lipofectinTM used to enhance cellular delivery. Furthermore, control ODN sequences, 2' O-methyl derivatives and a third ODN sequence, that was found not to be capable of binding efficiently to the EGFR mRNA by DNA chip technology, showed no significant effect on cell proliferation. AS 1 almost completely inhibited EGFR protein levels within 48 hours with two doses of 500nM AS 1 with no effect on other EGFR family member proteins or by control sequences. RNA analysis showed a decrease in mRNA levels of 32.4% ±0.8% but techniques require further optimisation to confirm this. As there are variations found between human glioblastoma in situ and those developed as xenografts, analysis of effect of AS 1 and AS2 was performed on primary tumour cell lines derived from glioma patients. ODN treatment showed a specific knockdown of cell growth compared to any of the controls used. Furthermore, combination therapies were tested on A431 cell growth to determine the advantage of combining different antisense approaches and that of conventional drugs. Results varied between the combination treatments but indicated that with optimisation of treatment regimes and delivery techniques that combination therapies utilising antisense therapies would be plausible.
Resumo:
The main objective of the work presented in this thesis is to investigate the two sides of the flute, the face and the heel of a twist drill. The flute face was designed to yield straight diametral lips which could be extended to eliminate the chisel edge, and consequently a single cutting edge will be obtained. Since drill rigidity and space for chip conveyance have to be a compromise a theoretical expression is deduced which enables optimum chip disposal capacity to be described in terms of drill parameters. This expression is used to describe the flute heel side. Another main objective is to study the effect on drill performance of changing the conventional drill flute. Drills were manufactured according to the new flute design. Tests were run in order to compare the performance of a conventional flute drill and non conventional design put forward. The results showed that 50% reduction in thrust force and approximately 18% reduction in torque were attained for the new design. The flank wear was measured at the outer corner and found to be less for the new design drill than for the conventional one in the majority of cases. Hole quality, roundness, size and roughness were also considered as a further aspect of drill performance. Improvement in hole quality is shown to arise under certain cutting conditions. Accordingly it might be possible to use a hole which is produced in one pass of the new drill which previously would have required a drilled and reamed hole. A subsidiary objective is to design the form milling cutter that should be employed for milling the foregoing special flute from drill blank allowing for the interference effect. A mathematical analysis in conjunction with computing technique and computers is used. To control the grinding parameter, a prototype drill grinder was designed and built upon the framework of an existing cincinnati cutter grinder. The design and build of the new grinder is based on a computer aided drill point geometry analysis. In addition to the conical grinding concept, the new grinder is also used to produce spherical point utilizing a computer aided drill point geometry analysis.
Resumo:
To capture the genomic profiles for histone modification, chromatin immunoprecipitation (ChIP) is combined with next generation sequencing, which is called ChIP-seq. However, enriched regions generated from the ChIP-seq data are only evaluated on the limited knowledge acquired from manually examining the relevant biological literature. This paper proposes a novel framework, which integrates multiple knowledge sources such as biological literature, Gene Ontology, and microarray data. In order to precisely analyze ChIP-seq data for histone modification, knowledge integration is based on a unified probabilistic model. The model is employed to re-rank the enriched regions generated from peak finding algorithms. Through filtering the reranked enriched regions using some predefined threshold, more reliable and precise results could be generated. The combination of the multiple knowledge sources with the peaking finding algorithm produces a new paradigm for ChIP-seq data analysis. © (2012) Trans Tech Publications, Switzerland.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.