868 resultados para knowledge management


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis starts with a literature review, outlining the major issues identified in the literature concerning virtual manufacturing enterprise (VME) transformation. Then it details the research methodology used – a systematic approach for empirical research. next, based on the conceptual framework proposed, this thesis builds three modules to form a reference model, with the purpose of clarifying the important issues relevant to transforming a traditional manufacturing company into a VME. The first module proposes a mechanism of VME transformation – operating along the VME metabolism. The second module builds a management function within a VME to ensure a proper operation of the mechanism. This function helps identify six areas as closely related to VME transformation: lean manufacturing; competency protection; internal operation performance measurement; alliance performance measurement; knowledge management; alliance decision making. The third module continues and proposes an alliance performance measurement system which includes 14 categories of performance indicators. An analysis template for alliance decision making is also proposed and integrated into the first module. To validate these three modules, 7 manufacturing organisations (5 in China and 2 in the UK) were investigated, and these field case studies are analysed in this thesis. The evidence found in these organisations, together with the evidence collected from the literature, including both researcher views and literature case studies, provide support for triangulation evidence. In addition, this thesis identifies the strength and weakness patterns of the manufacturing companies within the theoretical niche of this research, and clarifies the relationships among some major research areas from the perspective of virtual manufacturing. Finally, the research findings are summarised, as well as their theoretical and practical implications. Research limitations and recommendations for future work conclude this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of professional sectors have recently moved away from their longstanding career model of up-or-out promotion and embraced innovative alternatives. Professional labor is a critical resource in professional service firms. Therefore, changes to these internal labor markets are likely to trigger other innovations, for example in knowledge management, incentive schemes and team composition. In this chapter we look at how new career models affect the core organizing model of professional firms and, in turn, their capacity for and processes of innovation. We consider how professional firms link the development of human capital and the division of professional labor to distinctive demands for innovation and how novel career systems help them respond to these demands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes a case study of wireless network implementation in a politically sensitive environment and seeks to gain practical insights for IT managers in today’s networked economy. The case evolved around an urgent decision to implement wireless networks that were a radical replacement for the existing wired network infrastructure. Although the wireless network infrastructure was well calculated as being considerably cost-efficient, inexperienced administrators and IT department failed to consult various involved stakeholders. Consequently, unintended results of wireless network implementation entangled with the cost efficiency of technology outcome and in turn undermined the objectives and achievement of the initial project plan. Drawing from social perspectives, this case study challenges traditionally dominant perspectives of technology efficiency and summarizes several lessons that could help IT managers and policy makers to better strategize ICT in general, and wireless networks in particular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discovering who works with whom, on which projects and with which customers is a key task in knowledge management. Although most organizations keep models of organizational structures, these models do not necessarily accurately reflect the reality on the ground. In this paper we present a text mining method called CORDER which first recognizes named entities (NEs) of various types from Web pages, and then discovers relations from a target NE to other NEs which co-occur with it. We evaluated the method on our departmental Website. We used the CORDER method to first find related NEs of four types (organizations, people, projects, and research areas) from Web pages on the Website and then rank them according to their co-occurrence with each of the people in our department. 20 representative people were selected and each of them was presented with ranked lists of each type of NE. Each person specified whether these NEs were related to him/her and changed or confirmed their rankings. Our results indicate that the method can find the NEs with which these people are closely related and provide accurate rankings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Browsing constitutes an important part of the user information searching process on the Web. In this paper, we present a browser plug-in called ESpotter, which recognizes entities of various types on Web pages and highlights them according to their types to assist user browsing. ESpotter uses a range of standard named entity recognition techniques. In addition, a key new feature of ESpotter is that it addresses the problem of multiple domains on the Web by adapting lexicon and patterns to these domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of studies have been devoted to modeling the contents and interactions between users on Twitter. In this paper, we propose a method inspired from Social Role Theory (SRT), which assumes that a user behaves differently in different roles in the generation process of Twitter content. We consider the two most distinctive social roles on Twitter: originator and propagator, who respectively posts original messages and retweets or forwards the messages from others. In addition, we also consider role-specific social interactions, especially implicit interactions between users who share some common interests. All the above elements are integrated into a novel regularized topic model. We evaluate the proposed method on real Twitter data. The results show that our method is more effective than the existing ones which do not distinguish social roles. Copyright 2013 ACM.