979 resultados para kaolinite, intercalation, Raman microscopy, infrared spectroscopy, X-ray powder diffraction, thermal analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO2/4- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the m1 PO3/4- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the v3PO3/4- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the m4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the m2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-gel synthesis in varied gravity is only a relatively new topic in the literature and further investigation is required to explore its full potential as a method to synthesise novel materials. Although trialled for systems such as silica, the specific application of varied gravity synthesis to other sol-gel systems such as titanium has not previously been undertaken. Current literature methods for the synthesis of sol-gel material in reduced gravity could not be applied to titanium sol-gel processing, thus a new strategy had to be developed in this study. To successfully conduct experiments in varied gravity a refined titanium sol-gel chemical precursor had to be developed which allowed the single solution precursor to remain un-reactive at temperatures up to 50oC and only begin to react when exposed to a pressure decrease from a vacuum. Due to the new nature of this precursor, a thorough characterisation of the reaction precursors was subsequently undertaken with the use of techniques such as Nuclear Magnetic Resonance, Infra-red and UV-Vis spectroscopy in order to achieve sufficient understanding of precursor chemistry and kinetic stability. This understanding was then used to propose gelation reaction mechanisms under varied gravity conditions. Two unique reactor systems were designed and built with the specific purpose to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol-gels to be studied. The first system was a centrifuge capable of providing high gravity environments of up to 70 g’s for extended periods, whilst applying a 100 mbar vacuum and a temperature of 40-50oC to the reaction chambers. The second system to be used in the QUT Microgravity Drop Tower Facility was also required to provide the same thermal and vacuum conditions used in the centrifuge, but had to operate autonomously during free fall. Through the use of post synthesis characterisation techniques such as Raman Spectroscopy, X-Ray diffraction (XRD) and N2 adsorption, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesised above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward towards this excess of water, which favours the condensation reaction of remaining sol gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favoured instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40-50oC instead of the conventional method of calcination above 450oC solely through sol-gel synthesis at higher gravity levels. It is hoped that the outcomes of this research will lead to an increased understanding of the effects of gravity on chemical synthesis of titanium sol-gel, potentially leading to the development of improved products suitable for diverse applications such as semiconductor or catalyst materials as well as significantly reducing production and energy costs through manufacturing these materials at significantly lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α- and β-Phase MoO3 are synthesized using an electrodeposition method on fluorine-doped tin oxide (FTO) glass substrates from sodium-molybdate (Na2MoO4) solutions. We show that it is possible to obtain both α- and β-MoO3 by manipulating the cyclic voltammetry (CV) parameters during electrodeposition. Raman spectroscopy, X-ray diffraction, and scanning electron microscopy indicate that the applied potential range and sweep rate are strongly influential on the phase obtained and the surface morphology of the electrodeposited thin films. Gasochromic measurements were carried out on the annealed samples by exposing them to H2 gas. It was revealed that α-MoO3 thin films provided better response to H2 interaction than β-MoO3 films did. Additionally, porous films provided significantly larger responses than smooth films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn2þ 4 (Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm-1 are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm-1 are assigned to the AsO3- 4 antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm-1 is assigned to the m2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm-1 are assigned to the m4 out of plane bending modes of the AsO3-4 units. Intense Raman bands observed at 301 and 314 cm-1 are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm-1 are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The molecular structure of gartrellite is assessed. Gartrellite is one of the tsumcorite mineral group based upon arsenate and/or sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with two water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the mineral gartrellite enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO3/4 anion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of NR composites filled with modified kaolinite (MK), carbon black (CB) and the hybrid fillercontained MK and CB, were prepared by melt blending. The microstructure, combustion and thermaldecomposition behaviors of NR composites were characterized by TEM, XRD, infrared spectroscopy, conecalorimeter test (CCT) and thermal-gravimetric analysis (TG). The results show that the filler hybridizationcan improve the dispensability and shape of the kaolinite sheets in the rubber matrix and change theinterface bond between kaolinite particles and rubber molecules. NR-3 filled by 10 phr MK and 40 phr CBhas the lowest heat release rate (HRR), mass loss rate (MLR), total heat release (THR), smoke productionrate (SPR) and the highest char residue among all the NR composites. Therefore, the hybridization ofthe carbon black particles with the kaolinite particles can effectively improve the thermal stability andcombustion properties of NR composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied a mineral sample of mottramite PbCu(VO4)(OH) from Tsumeb, Namibia using a combination of scanning electron microscopy with EDX, Raman and infrared spectroscopy. Chemical analysis shows principally the elements V, Pb and Cu. Ca occurs as partial substitution of Pb as well as P and As in substitution to V. Minor amounts of Si and Cr were also observed. The Raman band of mottramite at 829 cm-1, is assigned to the ν1 symmetric (VO-4) ) stretching mode. The complexity of the spectra is attributed to the chemical composition of the Tsumeb mottramite. The ν3 antisymmetric vibrational mode of mottramite is observed as very low intensity bands at 716 and 747 cm-1. The series of Raman bands at 411, 439, 451 cm-1 and probably also the band at 500 cm-1 are assigned to the (VO-4) ν2 bending mode. The series of Raman bands at 293, 333 and 366 cm-1 are attributed to the (VO-4) ) ν4 bending modes. The ν3, ν3 and ν4 regions are complex for both minerals and this is attributed to symmetry reduction of the vanadate unit from Td to Cs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)⋅5H2O using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of the [Si10O28] units. The sharp band at 3642 cm-1 with shoulder bands at 3612 and 3662 cm-1 are assigned to the OH stretching vibrations of the hydroxyl units. The broad Raman band at 3420 cm-1 with shoulder bands at 3362 and 3496 cm-1 are assigned to the water stretching vibrations. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite to be undertaken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural single-crystal specimen of the kröhnkite from Chuquicamata, Chile, with the general formula Na2Cu(SO4)2 · 2H2O, was investigated by Raman and infrared spectroscopy. The mineral kröhnkite is found in many parts of the world's arid areas. Kröhnkite crystallizes in the monoclinic crystal system with point group 2/m and space group P21/c. It is an uncommon secondary mineral formed in the oxidized zone of copper deposits, typically in very arid climates. The Raman spectrum of kröhnkite dominated by a very sharp intense band at 992 cm−1 is assigned to the ν1 symmetric stretching mode and Raman bands at 1046, 1049, 1138, 1164, and 1177 cm−1 are assigned to the ν3 antisymmetric stretching vibrations. The infrared spectrum shows an intense band at 992 cm−1. The Raman bands at 569, 582, 612, 634, 642, 655, and 660 cm−1 are assigned to the ν4 bending modes. Three Raman bands observed at 429, 445, and 463 cm−1 are attributed to the ν2 bending modes. The observation that three or four bands are seen in the ν4 region of kröhnkite is attributed to the reduction of symmetry to C2v or less.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV-Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. Both the ferrous (Fe2+) and ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferrous ions produce a strong absorption band at around 9000 cm-1, while ferric ions produce two strong bands at 25000 and 14300 cm-1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5200 and 7000 cm-1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3500 cm-1 are assigned to the OH stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (SD 15) years and 23·3 (SD 5·1) kg/m2, respectively, for men and 37 (SD 14) years and 24·1 (SD 5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI 218,223) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI 28·2, 26·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably