963 resultados para ionic liq reconstituted cellulose composite solid support matrix transparency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris( bipyridine) (PtNPs/ AQ/Ru(bpy)(3)(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)(3)(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)(3)(2+), and a shorter equilibration time than Ru(bpy)(3)(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CE/tris(2,2-bipyridyl) ruthenium(ll) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL), CEECL, with an ionic liquid (IL) detection system was established for the determination of bioactive constituents in Chinese traditional medicine opium poppy which contain large amounts of coexistent substances. A minimal sample pretreatment which involves a one-step extraction approach avoids both sample loss and environmental pollution. As the nearby hydroxyl groups in some alkaloid such as morphine may react with borate to form complexes and IL, as a high-conductivity additive in running buffer, could cause an enhanced field-amplified effect of electrokinetic injection. Running buffer containing 25 mM borax-8 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF(4)) IL (pH 9.18) was used which resulted in significant changes in separation selectivity and obvious enhancement in ECL intensities for those alkaloids with similar structures. Sensitive detection could be achieved when the distance between the Pt working electrode and the outlet of separation capillary was set at 150 mu m and the stainless steel cannula was fixed approximately 1 cm away from the outlet of the capillary. Quantitative analysis of four alkaloids was achieved at a detection voltage of 1.2 V and a separation voltage of 15 kV in less than 7 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWCNTs) as reinforcing components were extended into silica monoliths and thin films via covalent functionalization for the first time. Silica materials have poor mechanical attributes, which limit their applications. Because of the extreme flexibility of SWCNTs and their large interfacial area, they may be very intriguing as reinforcing fillers for the silica matrix. To get more uniform dispersion and stronger interfacial interaction, SWCNTs were covalently functionalized with silane, and then integrated into silica via a sol - gel process, and their properties were also compared with those of pristine SWCNTs. Results show that the silane-functionalized nanotubes resulted in better mechanical properties ( for example, 33% increase in stress, and 53% increase in toughness), as well as higher electron-transfer kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel dissolving process for chitin and chitosan has been developed by using the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) as a solvent, and a novel application of chitin and chitosan as substitutes for amino-functionalized synthetic polymers for capturing and releasing CO2 has also been exploited based on this processing strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of La2O3-ZrO2-CeO2 composite oxides were synthesized by solid-state reaction. The final product keeps fluorite structure when the molar ratio Ce/Zr >= 0.7/0.3, and below this ratio only mixtures of La2Zr2O7 (pyrochlore) and La2O3-CeO2 (fluorite) exist. Averagely speaking, the increase of CeO2 content gives rise to the increase of thermal expansion coefficient and the reduction of thermal conductivity, but La-2(Zr0.7Ce0.3)(2)O-7 has the lowest sintering ability and the lowest thermal conductivity which could be explained by the theory of phonon scattering. Based on the large thermal expansion coefficient of La2Ce3.25O9.5, the low thermal conductivities and low sintering abilities of La2Zr2O7 and La-2(Zr0.7Ce0.3)(2)O-7, double-ceramic-layer thermal barrier coatings were prepared. The thermal cycling tests indicate that such a design can largely improve the thermal cycling lives of the coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature thermal barrier coatings, double-ceramic-layer coating may be an important development direction of thermal barrier coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress transfer from broken fibers to unbroken fibers in fiber-reinforced thermosetting polymer-matrix composites and thermoplastic polymer-matrix composites was studied using a detailed finite element model. In order to check the validity of this approach, an epoxy-matrix monolayer composite was used as thermosetting polymer-matrix composite and a polypropylene (PP)-matrix monolayer composite was used as thermoplastic polymer-matrix composite, respectively. It is found that the stress concentrations near the broken fiber element cause damage to the neighboring epoxy matrix prior to the breakage of other fibers, whereas in the case of PP-matrix composites the fibers nearest to the broken fiber break prior to the PP matrix damage, because the PP matrix around the broken fiber element yields. In order to simulate composite damage evolution, a Monte Carlo technique based on a finite element method has been developed in the paper. The finite element code coupled with statistical model of fiber strength specifically written for this problem was used to determine the stress redistribution. Five hundred samples of numerical simulation were carried out to obtain statistical deformation and failure process of composites with fixed fiber volume fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel ternary polyimide/SiO2/polydiphenylsiloxane (PI/SiO2/PDPhS) composite films were prepared through co-hydrolysis and condensation between tetramethoxysilane, diphenyldimethoxysilane (DDS) and aminopropyltriethoxysilane-terminated polyamic acid, using an in situ sol-gel method. The composite films exhibited good optical transparency up to 30 wt% of total content of DDS and SiO2. SEM analysis showed that the PDPhS and SiO2 were well dispersed in the PI matrix without macroscopic separation of the composite films. TGA analysis indicated that the introduction of SiO2 could improve the thermal stability of the composite films. Dynamic mechanical thermal analysis showed that the composite films with low DDS content (5 wt%) had a higher glass transition temperature (T-g) than pure PI matrix. When the content of DDS was above 10 wt%, the T-g of the composite decreased slightly due to the plasticizing effect of flexible PDPhS linkages on the rigid PI chains. The composite films with high SiO2 content exhibited higher values of storage modulus. Tensile measurements also showed that the modulus and tensile strength of the composite films increased with increasing SiO2 content, and the composite films still retained a high elongation at break due the introduction of DDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel polyimide/polydiphenylsiloxane) (PI/PDDS) composite films with different contents of DDS were prepared using sol-gel method. The noncrosslinked PI-DDS and crosslinked PIS-DDS were synthesized through cohydrolysis and condensation between DDS and polyamic acid (PAA) or aminopropyltriethoxysilane(APTES)-terminated polyamic acid (PAAS). All the composite films have high thermal stability near pure PI. Field emission scanning electron microscopy (FE-SEM) study shows that the polysiloxane from hydrolyzed DDS well dispersed in polyimide matrix, without macroscopic separation for the composite films with low content of DDS, while large domain of polysiloxane was formed in films with high DDS content. The microstructure of composite films is in accordance with the transparency of corresponding films. X-ray study shows the PDDS is amorphous in PI matrix. The introduction of DDS into PI can improve the elongation at break and at the same time, the composite films still remained with higher modulus and tensile strength. The density and water absorption of the composite films decreased with the increasing DDS content. The composite films with DDS content below 10 wt % exhibit good solvent resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present review, the authors do not try to provide a comprehensive review of researches on polymer/clay nanocomposites (PCNs), but some examples to demonstrate different exfoliation processes of the clay in various polymer matrixes and the dispersed state of clay. Interaction between polymers and layered silicates plays an important role in adjusting the exfoliation process of layered silicates and the microstructure of polymer nanocomposites. Properties of polymer/layered silicate nanocomposites mainly depend on the dispersed state of layered silicates. The authors will also address the outline of the present research in the direction of PCNs including the discussion of technical problems and their possible solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of alpha-Keggin-type nanoparticles, Co(en)(3)(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol(-1)) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.