948 resultados para intermittent hypoxia, obstructive sleep apnea
Resumo:
Milk fat globule epidermal growth factor 8 (MFG-E8) is an opsonin involved in the phagocytosis of apoptotic cells. In patients with chronic obstructive pulmonary disease (COPD), apoptotic cell clearance is defective. However, whether aberrant MFG-E8 expression is involved in this defect is unknown. In this study, we examined the expression of MFG-E8 in COPD patients. MFG-E8, interleukin (IL)-1β and transforming growth factor (TGF)-β levels were measured in the plasma of 96 COPD patients (93 males, 3 females; age range: 62.12±10.39) and 87 age-matched healthy controls (85 males, 2 females; age range: 64.81±10.11 years) using an enzyme-linked immunosorbent assay. Compared with controls, COPD patients had a significantly lower plasma MFG-E8 levels (P<0.01) and significantly higher plasma TGF-β levels (P=0.002), whereas there was no difference in plasma IL-1β levels between the two groups. Moreover, plasma MFG-E8 levels decreased progressively between Global Initiative for Chronic Obstructive Lung Disease (GOLD) I and GOLD IV stage COPD. Multiple regression analysis showed that the forced expiratory volume in 1 s (FEV1 % predicted) and smoking habit were powerful predictors of MFG-E8 in COPD (P<0.01 and P=0.026, respectively). MFG-E8 was positively associated with the FEV1 % predicted and negatively associated with smoking habit. The area under the receiver operating characteristic curve was 0.874 (95% confidence interval: 0.798-0.95; P<0.01). Our findings demonstrated the utility of MFG-E8 as a marker of disease severity in COPD and that cigarette smoke impaired MFG-E8 expression in these patients.
Resumo:
Whether sleep problems of menopausal women are associated with vasomotor symptoms and/or changes in estrogen levels associated with menopause or age-related changes in sleep architecture is unclear. This study aimed to determine if poor sleep in middle-aged women is correlated with menopause. This study recruited women seeking care for the first time at the menopause outpatient department of our hospital. Inclusion criteria were an age ≥40 years, not taking any medications for menopausal symptoms, and no sleeping problems or depression. Patients were assessed with the Pittsburgh Sleep Quality Index (PSQI), modified Kupperman Index (KI), and Menopause Rating Scale (MRS). A PSQI score of <7 indicated no sleep disorder and ≥7 indicated a sleep disorder. Blood specimens were analyzed for follicle-stimulating hormone and estradiol levels. A total of 244 women were included in the study; 103 (42.2%) were identified as having a sleep disorder and 141 as not having one. In addition, 156 (64%) women were postmenopausal and 88 (36%) were not menopausal. Follicle-stimulating hormone and estradiol levels were similar between the groups. Patients with a sleep disorder had a significantly higher total modified KI score and total MRS score (both, P<0.001) compared with those without a sleep disorder. Correlations of the PSQI total score with the KI and MRS were similar in menopausal and non-menopausal women. These results do not support that menopause per se specifically contributes to sleep problems.
Resumo:
The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.
Resumo:
Sleep is important for the recovery of a critically ill patient, as lack of sleep is known to influence negatively a person’s cardiovascular system, mood, orientation, and metabolic and immune function and thus, it may prolong patients’ intensive care unit (ICU) and hospital stay. Intubated and mechanically ventilated patients suffer from fragmented and light sleep. However, it is not known well how non-intubated patients sleep. The evaluation of the patients’ sleep may be compromised by their fatigue and still position with no indication if they are asleep or not. The purpose of this study was to evaluate ICU patients’ sleep evaluation methods, the quality of non-intubated patients’ sleep, and the sleep evaluations performed by ICU nurses. The aims were to develop recommendations of patients’ sleep evaluation for ICU nurses and to provide a description of the quality of non-intubated patients’ sleep. The literature review of ICU patients’ sleep evaluation methods was extended to the end of 2014. The evaluation of the quality of patients’ sleep was conducted with four data: A) the nurses’ narrative documentations of the quality of patients’ sleep (n=114), B) the nurses’ sleep evaluations (n=21) with a structured observation instrument C) the patients’ self-evaluations (n=114) with the Richards-Campbell Sleep Questionnaire, and D) polysomnographic evaluations of the quality of patients’ sleep (n=21). The correspondence of data A with data C (collected 4–8/2011), and data B with data D (collected 5–8/2009) were analysed. Content analysis was used for the nurses’ documentations and statistical analyses for all the other data. The quality of non-intubated patients’ sleep varied between individuals. In many patients, sleep was light, awakenings were frequent, and the amount of sleep was insufficient as compared to sleep in healthy people. However, some patients were able to sleep well. The patients evaluated the quality of their sleep on average neither high nor low. Sleep depth was evaluated to be the worst and the speed of falling asleep the best aspect of sleep, on a scale 0 (poor sleep) to 100 (good sleep). Nursing care was mostly performed while the patients were awake, and thus the disturbing effect was low. The instruments available for nurses to evaluate the quality of patients’ sleep were limited and measured mainly the quantity of sleep. Nurses’ structured observatory evaluations of the quality of patients’ sleep were correct for approximately two thirds of the cases, and only regarding total sleep time. Nurses’ narrative documentations of the patients’ sleep corresponded with patients’ self-evaluations in just over half of the cases. However, nurses documented several dimensions of sleep that are not included in the present sleep evaluation instruments. They could be classified according to the components of the nursing process: needs assessment, sleep assessment, intervention, and effect of intervention. Valid, more comprehensive sleep evaluation methods for nurses are needed to evaluate, document, improve and study patients’ quality of sleep.
Resumo:
INTRODUCTION: Mesangial cells (MC) may be involved in the glomerular alterations induced by ischemia/reperfusion injury. OBJECTIVE: To evaluate the response of immortalized MC (IMC) to 30 minutes of hypoxia followed by reoxygenation periods of 30 minutes (H/R30) or 24 hours (H/R24). METHODS: The intracellular calcium concentration ([Ca+2]i) was measured before (baseline) and after adding angiotensin II (AII, 10-5 M) in the presence and absence of glybenclamide (K ATP channel blocker). We estimated the level of intracellular ATP, nitric oxide (NO) and PGE2. RESULTS: ATP concentration decreased after hypoxia and increased after reoxygenation. Hypoxia and H/R induced increases in basal [Ca+2]i. AII induced increases in [Ca+2]i in normoxia (97 ± 9%), hypoxia (72 ± 10%) or HR30 (85 ± 17%) groups, but there was a decrease in the response to AII in group H/R24 since the elevation in [Ca+2]i was significantly lower than in control (61 ± 10%, p < 0.05). Glybenclamide did not modify this response. It was observed a significant increase in NO generation after 24 hours of reoxygenation, but no difference in PGE2 production was observed. Data suggest that H/R injury is characterized by increased basal [Ca+2]i and by an impairment in the response of cells to AII. Results suggest that the relative insensibility to AII may be at least in part mediated by NO but not by prostaglandins or vasodilator K ATP channels. CONCLUSION: H/R caused dysfunction in IMC characterized by increases in basal [Ca+2]i during hypoxia and reduction in the functional response to AII during reoxygenation.
Resumo:
A tumor is a fast-growing malignant tissue. This creates areas inside the tumor that are distant from local blood vessels to be able to get enough oxygen. This hypoxic condition activates a transcription factor called hypoxia inducible factor (HIF). HIF responses help a cell to adapt to decreased oxygen by activating glycolytic and angiogenesis pathways and by regulating apoptotic responses. Hypoxia drives the upregulation of a growth factor called transforming growth factor beta (TGF-beta). Similar to a hypoxia response, TGF is an important regulator of cell fate. TGF-β and HIF pathways regulate partially overlapping target genes. This regulation can also be cooperative. The TGF-beta signal is initiated by activation of plasma membrane receptors that then activate effector proteins called small mothers against decapentaplegic (Smad) homologs. In healthy tissue, TGF-β keeps cell proliferation and growth under control. During cancer progression, TGF-beta has shown a dual role, whereby it inhibits initial tumor formation but, conversely, in an existent tumor, TGF-beta drives malignant progression. Along with HIF and TGF-beta also protein dephosphorylation is an important regulatory mechanism of cell fate. Protein dephosphorylation is catalyzed by protein phosphatases such as Protein phosphatase 2A (PP2A). PP2A is a ubiquitous phosphatase that can exist in various active forms. PP2A can specifically regulate TGF-beta signaling either by enhancing or inhibiting the receptor activity. This work demonstrates that during hypoxia, PP2A is able to fine-tune TGF-beta signal by specifically targeting Smad3 effector in a Smad7-dependent manner. Inactivation of Smad3 in hypoxia leads to malignant conversion of TGF-beta signaling.
Resumo:
Asthma, COPD, and asthma and COPD overlap syndrome (ACOS) are chronic pulmonary diseases with an obstructive component. In COPD, the obstruction is irreversible and the disease is progressive. The aim of the study was to define and analyze factors that affected disease progression and patients’ well-being, prognosis and mortality in Chronic Airway Disease (CAD) cohort. The main focus was on COPD and ACOS patients. Retrospective data from medical records was combined with genetic and prospective follow-up data. Smoking is the biggest risk factor for COPD and even after the diagnosis of the disease, smoking plays an important role in disease development and patient’s prognosis. Sixty percent of the COPD patients had succeeded in smoking cessation. Patients who had managed to quit smoking had lower mortality rates and less psychiatric diseases and alcohol abuse although they were older and had more cardiovascular diseases than patients who continued smoking. Genetic polymorphism rs1051730 in the nicotinic acethylcholine receptor gene (CHRNA3/5) associated with heavy smoking, cancer prevalence and mortality in two Finnish independent cohorts consisting of COPD patients and male smokers. Challenges in smoking cessation and higher mortality rates may be partly due to individual patient’s genetic composition. Approximately 50% of COPD patients are physically inactive and the proportion was higher among current smokers. Physically active and inactive patients didn’t differ from each other in regard to age, gender or comorbidities. Bronchial obstruction explained inactivity only in severe disease. Subjective sensation of dyspnea, however, had very strong association to inactivity and was also associated to low health related quality of life (HRQoL). ACOS patients had a significantly lower HRQoL than either the patients with asthma or with COPD even though they were younger than COPD patients, had better lung functions and smaller tobacco exposure.
Resumo:
The purpose of the current undertaking was to study the electrophysiological properties of the sleep onset period (SOP) in order to gain understanding into the persistent sleep difficulties of those who complain of insomnia following mild traumatic brain injury (MTBI). While many believe that symptoms of post concussion syndrome (PCS) following MTBI resolve within 6 to 12 months, there are a number of people who complain of persistent sleep difficulty. Two models were proposed which hypothesize alternate electrophysiological presentations of the insomnia complaints of those sustaining a MTBI: 1) Analyses of standard polysomnography (PSG) sleep parameters were conducted in order to determine if the sleep difficulties of the MTBI population were similar to that of idiopathic insomniacs (i.e. greater proportion ofREM sleep, reduced delta sleep); 2) Power spectral analysis was conducted over the SOP to determine if the sleep onset signature of those with MTBI would be similar to psychophysiological insomniacs (characterized by increased cortical arousal). Finally, exploratory analyses examined whether the sleep difficulties associated with MTBI could be explained by increases in variability of the power spectral data. Data were collected from 9 individuals who had sustained a MTBI 6 months to 5 years earlier and reported sleep difficulties that had arisen within the month subsequent to injury and persisted to the present. The control group consisted of 9 individuals who had experienced neither sleep difficulties, nor MTBI. Previous to spending 3 consecutive uninterrupted nights in the sleep lab, subjects completed questionnaires regarding sleep difficulties, adaptive functioning, and personality.
Resumo:
Recent dose-response sleep restriction studies, in which nightly sleep is curtailed to varying degrees (e.g., 3-, 5-, 7-hours), have found cumulative, dose-dependent changes in sleepiness, mood, and reaction time. However, brain activity has typically not been measured, and attentionbased tests employed tend to be simple (e.g., reaction time). One task addressing the behavioural and electrophysiological aspects of a specific attention mechanism is the Attentional Blink (AB), which shows that the report accuracy of a second target (T2) is impaired when it is presented soon after a first target (Tl). The aim of the present study was to examine behavioural and electrophysioiogical responses to the AB task to elucidate how sleep restriction impacts attentional capacity. Thirty-six young-adults spent four consecutive days and nights in a sleep laboratory where sleep, food, and activity were controlled. Nightly sleep began with a baseline sleep (8 hours), followed by two nights of sleep restriction (3,5 or 8 hours of sleep), and a recovery sleep (8 hours). An AB task was administered each day at 11 am. Results from a basic battery oftests (e.g., sleepiness, mood, reaction time) confirmed the effectiveness of the sleep restriction manipulation. In terms of the AB, baseline performance was typical (Le., T2 accuracy impaired when presented soon after Tl); however, no changes in any AB behavioural measures were observed following sleep restriction for the 3- or 5-hour groups. The only statistically significant electrophysiological result was a decrease in P300 amplitude (for Tl) from baseline to the second sleep restriction night for the 3-hour group. Therefore, following a brief, two night sleep restriction paradigm, brain functioning was impaired for the TI of the AB in the absence of behavioural deficit. Study limitations and future directions are discussed.
Resumo:
Most metabolic functions are optimized within a narrow range of body temperatures, which is why thermoregulation is of great importance for the survival and overall fitness of an animal. It has been proposed that lizards will thermoregulate less precisely in low thermal quality environments, where the costs associated with thermoregulation are high; in the case of lizards, whose thermoregulation is mainly behavioural, the primary costs ofthermoregulation are those derived from locomotion. Decreasing thermoregulatory precision in costly situations is a strategy that enhances fitness by allowing lizards to be more flexible to changing environmental conditions. It allows animals to maximize the benefits of maintaining a relatively high body temperature while minimizing energy expenditure. In situations where oxygen concentration is low, the costs of thermoregulation are relatively high (i.e. in relation to the amount of oxygen available for metabolic functions). As a result, it is likely that exposures to hypoxic conditions induce a decrease in the precision of thermoregulation. This study evaluated the effects of hypoxia and low environmental thermal quality, two energetically costly conditions, on the precision and level of thermoregulation in the bearded dragon, Pogona vitticeps, in an electronic temperature-choice shuttle box. Four levels of hypoxia (1O, 7, 5 and 4% 02) were tested. Environmental thermal quality was manipulated by varying the rate of temperature change (oTa) in an electronic temperature-choice shuttle box. Higher oT a's translate into more thermally challenging environments, since under these conditions the animals are forced to move a greater number of times (and hence invest more energy in locomotion) to maintain similar temperatures than at lower oTa's. In addition, lizards were tested in an "extreme temperatures" treatment during which air temperatures of the hot and cold compartments of the shuttle box were maintained at a constant 50 and 15°C respectively. This was considered the most thermally challenging environment. The selected ambient (T a) and internal body temperatures (Tb) of bearded dragons, as well as the thermoregulatory precision (measured by the central 68% ofthe Ta and T b distribution) were evaluated. The thermoregulatory response was similar to both conditions. A significant increase in the size of the Tb range, reflecting a decrease in thermoregulatory precision, and a drop in preferred body temperature of ~2 °C, were observed at both 4% oxygen and at the environment of lowest thermal quality. The present study suggests that in energetically costly situations, such as the ones tested in this study, the bearded dragon reduces energy expenditure by decreasing preferred body temperature and minimizing locomotion, at the expense of precise behavioural thermoregulation. The close similarity of the behavioural thermoregulatory response to two very different stimuli suggests a possible common mechanism and neuronal pathway to the thermoregulatory response.
Resumo:
The present thesis study is a systematic investigation of information processing at sleep onset, using auditory event-related potentials (ERPs) as a test of the neurocognitive model of insomnia. Insomnia is an extremely prevalent disorder in society resulting in problems with daytime functioning (e.g., memory, concentration, job performance, mood, job and driving safety). Various models have been put forth in an effort to better understand the etiology and pathophysiology of this disorder. One of the newer models, the neurocognitive model of insomnia, suggests that chronic insomnia occurs through conditioned central nervous system arousal. This arousal is reflected through increased information processing which may interfere with sleep initiation or maintenance. The present thesis employed event-related potentials as a direct method to test information processing during the sleep-onset period. Thirteen poor sleepers with sleep-onset insomnia and 1 2 good sleepers participated in the present study. All poor sleepers met the diagnostic criteria for psychophysiological insomnia and had a complaint of problems with sleep initiation. All good sleepers reported no trouble sleeping and no excessive daytime sleepiness. Good and poor sleepers spent two nights at the Brock University Sleep Research Laboratory. The first night was used to screen for sleep disorders; the second night was used to investigate information processing during the sleep-onset period. Both groups underwent a repeated sleep-onsets task during which an auditory oddball paradigm was delivered. Participants signalled detection of a higher pitch target tone with a button press as they fell asleep. In addition, waking alert ERPs were recorded 1 hour before and after sleep on both Nights 1 and 2.As predicted by the neurocognitive model of insomnia, increased CNS activity was found in the poor sleepers; this was reflected by their smaller amplitude P2 component seen during wake of the sleep-onset period. Unlike the P2 component, the Nl, N350, and P300 did not vary between the groups. The smaller P2 seen in our poor sleepers indicates that they have a deficit in the sleep initiation processes. Specifically, poor sleepers do not disengage their attention from the outside environment to the same extent as good sleepers during the sleep-onset period. The lack of findings for the N350 suggest that this sleep component may be intact in those with insomnia and that it is the waking components (i.e., Nl, P2) that may be leading to the deficit in sleep initiation. Further, it may be that the mechanism responsible for the disruption of sleep initiation in the poor sleepers is most reflected by the P2 component. Future research investigating ERPs in insomnia should focus on the identification of the components most sensitive to sleep disruption. As well, methods should be developed in order to more clearly identify the various types of insomnia populations in research contexts (e.g., psychophysiological vs. sleep-state misperception) and the various individual (personality characteristics, motivation) and environmental factors (arousal-related variables) that influence particular ERP components. Insomnia has serious consequences for health, safety, and daytime functioning, thus research efforts should continue in order to help alleviate this highly prevalent condition.
Resumo:
Mammalian heterotherms, such as hibemators, are known to be more tolerant of low oxygen tensions than their homeothermic counterparts. It has been suggested that this relative hypoxia tolerance is related to their ability to deal with dramatic changes in body temperature during entry to and arousal from torpor. However, hibemators demonstrate dramatic seasonality in both daily heterothermy and overall torpor expression. It was of interest to test if seasonal comparisons of normothermic individuals within a single species with the capacity to hibernate produce changes in the response to hypoxia that would reflect a seasonal change in tolerance to low oxygen. In particular, the species studied, the Eastern chipmunk {Tamias striatus), is known to enter into torpor exclusively in the winter. To test for seasonal differences in the metabolic and thermoregulatory responses to hypoxia, flow-through respirometry was used to compare metabolic rate, minimum thermal conductance, body temperature, and a thermal gradient used to assess selected ambient temperature in response to hypoxia in both summer and winter acclimated animals. Although the animals periodically expressed torpor throughout the winter, no differences between season in resting metabolic rate, body temperature or minimum thermal conductance were observed in normoxia. The metabolic trials indicated that chipmunks are less responsive to hypoxia in the winter than they are in the summer. Although body temperature dropped in response to hypoxia in both seasons, the decrease was less in the winter, and there was no corresponding decrease in metabolic rate. Providing the animals with a choice of ambient temperatures in hypoxia resulted in a blunting of the drop in body temperature in both seasons, suggesting that the reported fall in body temperature set point in hypoxia is not fully manifested in the behavioural pathways responsible for thermoregulation in chipmunks. Instead, body temperature in hypoxia appears to be highly dependent on ambient temperature and oxygen concentration. The results of this study suggest that the season in which the responses to hypoxia are measured is important, especially in a heterotherm where seasonality can affect the degree to 1 which the animal is tolerant of hypoxia. Winter-acclimated chipmunks appear more capable of defending metabolic heat production in hypoxia, a response consistent with the increased thermogenic capacity observed in animals that must periodically enter and arouse from torpor during hibernation.
Resumo:
The EEG of the sleep onset period of psychophysiological insomniacs, psychiatric insomniacs and controls was compared using power spectral analysis (FFT). Eighteen drug-free subjects were equally divided into three groups according to their responses in the Brock Sleep and Insomnia Questionnaire, the Minnesota Multiphasic Personality Inventory and the Sleep Disorders Questionnaire. Group 1 consisted of psychophysiological insomniacs, group 2 included insomniacs with an indication of psychiatric disturbances, and group 3 was a control group. EEG, EOG and EMG were recorded for two consecutive nights. Power spectral analysis (FFT) of EEG at C4 from the sleep onset period (defined as lights out to the first five minutes of stage 2) was performed on all standard frequency bands, delta: .5-4 Hz; theta: 4-8 Hz; alpha: 8-12 Hz; sigma: 12-15 Hz beta: 15-25 Hz. Psychophysiological insomniacs had less alpha during wakefulness than the other two groups and did not show the dramatic drop in alpha across the sleep onset period, which characterizes normal sleep. They also had less delta, especially during stage 2 on night 2. They also showed less delta in the last quartile of the chronological analysis of the sleep onset period. Psychiatric insomniacs showed lower relative beta power values overall while psychophysiological insomniacs showed higher relative beta power values during wakefulness. This microanalysis 11 confirms that the sleep onset period is generally similar for psychiatric insomniacs and normal sleepers. This may be due to the sample of psychiatric insomniacs being heterogeneous or may reflect a sleep onset system that is essentially intact. Psychophysiological insomniacs have higher cortical arousal during the sleep onset period than do the psychiatric insomniacs and the controls. Clear differences in the sleep onset period of psychophysiological insomniacs exist. The dramatic changes in power values in these two groups are not seen in the psychophysiological insomniacs, which may make the discrimination between wakefulness and sleep more difficult.
Resumo:
The main purpose ofthis study was to examine the effect ofintention on the sleep onset process from an electrophysiological point ofview. To test this, two nap conditions, the Multiple Sleep Latency Test (MSLT) and the Repeated Test of Sustained Wakefulness (RTSW) were used to compare intentional and inadvertent sleep onset. Sixteen female participants (aged 19-25) spent two non-consecutive nights in the sleep lab; however, due to physical and technical difficulties only 8 participants produced compete sets of data for analysis. Each night participants were given six nap opportunities. For three ofthese naps they were instructed to fall asleep (MSLT), for the remaining three naps they were to attempt to remain awake (RTSW). These two types of nap opportunities represented the conditions ofintentional (MSLT) and inadvertent (RTSW) sleep onset. Several other sleepiness, performance, arousal and questionnaire measures were obtained to evaluate and/or control for demand characteristics, subjective effort and mental activity during the nap tests. The nap opportunities were scored using a new 9 stage scoring system developed by Hori et al. (1994). Power spectral analyses (FFT) were also performed on the sleep onset data provided by the two nap conditions. Longer sleep onset latencies (approximately 1.25 minutes) were obseIVed in the RTSW than the MSLT. A higher incidence of structured mental activity was reported in the RTSW and may have been reflected in higher Beta power during the RTSW. The decent into sleep was more ragged in the RTSW as evidenced by an increased number shifts towards higher arousal as measured using the Hori 9 stage sleep scoring method. 1ll The sleep onset process also appears to be altered by the intention to remain awake, at least until the point ofinitial Stage 2 sleep (i.e. the first appearance of spindle activity). When only examining the final 4.3 minutes ofthe sleep onset process (ending with spindle activity), there were significant interactions between the type ofnap and the time until sleep onset for Theta, Alpha and Beta power. That is to say, the pattern of spectral power measurements in these bands differed across time as a function ofthe type ofnap. The effect ofintention however, was quite small (,,2 < .04) when compared to the variance which could be accounted for by the passage oftime (,,2 == .10 to .59). These data indicate that intention alone cannot greatly extend voluntary wakefulness if a person is sleepy. This has serious implications for people who may be required to perform dangerous tasks while sleepy, particularly for people who are in a situation that does not allow them the opportunity to engage in behavioural strategies in order to maintain their arousal.