982 resultados para inside-outside algorithm
Resumo:
We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
The paper presents a design for a hardware genetic algorithm which uses a pipeline of systolic arrays. These arrays have been designed using systolic synthesis techniques which involve expressing the algorithm as a set of uniform recurrence relations. The final design divorces the fitness function evaluation from the hardware and can process chromosomes of different lengths, giving the design a generic quality. The paper demonstrates the design methodology by progressively re-writing a simple genetic algorithm, expressed in C code, into a form from which systolic structures can be deduced. This paper extends previous work by introducing a simplification to a previous systolic design for the genetic algorithm. The simplification results in the removal of 2N 2 + 4N cells and reduces the time complexity by 3N + 1 cycles.
Resumo:
We advocate the use of systolic design techniques to create custom hardware for Custom Computing Machines. We have developed a hardware genetic algorithm based on systolic arrays to illustrate the feasibility of the approach. The architecture is independent of the lengths of chromosomes used and can be scaled in size to accommodate different population sizes. An FPGA prototype design can process 16 million genes per second.
Resumo:
Capturing the pattern of structural change is a relevant task in applied demand analysis, as consumer preferences may vary significantly over time. Filtering and smoothing techniques have recently played an increasingly relevant role. A dynamic Almost Ideal Demand System with random walk parameters is estimated in order to detect modifications in consumer habits and preferences, as well as changes in the behavioural response to prices and income. Systemwise estimation, consistent with the underlying constraints from economic theory, is achieved through the EM algorithm. The proposed model is applied to UK aggregate consumption of alcohol and tobacco, using quarterly data from 1963 to 2003. Increased alcohol consumption is explained by a preference shift, addictive behaviour and a lower price elasticity. The dynamic and time-varying specification is consistent with the theoretical requirements imposed at each sample point. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits'' (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.
Resumo:
Plants encounter numerous pests and pathogens in the natural environment. An appropriate response to attack by such organisms can lead to tolerance or resistance mechanisms that enable the plant to survive. Many studies concentrate on the signalling pathways that enable plants to recognize and respond to attack, and measure the downstream effect in either biochemical or molecular terms. At the whole plant level, ecologists examine the fitness costs of attack not only for the plant but also over a range of trophic levels. The links between these differing levels of study are beginning to be addressed by the adoption of molecular approaches in more ecologically relevant settings. This review will describe the different approaches used by ecologists and cell biologists in this field and will try to address the question of how we can explore the response to, and consequences, of attack by multiple enemies.
Resumo:
We have developed a novel Hill-climbing genetic algorithm (GA) for simulation of protein folding. The program (written in C) builds a set of Cartesian points to represent an unfolded polypeptide's backbone. The dihedral angles determining the chain's configuration are stored in an array of chromosome structures that is copied and then mutated. The fitness of the mutated chain's configuration is determined by its radius of gyration. A four-helix bundle was used to optimise simulation conditions, and the program was compared with other, larger, genetic algorithms on a variety of structures. The program ran 50% faster than other GA programs. Overall, tests on 100 non-redundant structures gave comparable results to other genetic algorithms, with the Hill-climbing program running from between 20 and 50% faster. Examples including crambin, cytochrome c, cytochrome B and hemerythrin gave good secondary structure fits with overall alpha carbon atom rms deviations of between 5 and 5.6 Angstrom with an optimised hydrophobic term in the fitness function. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Liquid chromatography-mass spectrometry (LC-MS) datasets can be compared or combined following chromatographic alignment. Here we describe a simple solution to the specific problem of aligning one LC-MS dataset and one LC-MS/MS dataset, acquired on separate instruments from an enzymatic digest of a protein mixture, using feature extraction and a genetic algorithm. First, the LC-MS dataset is searched within a few ppm of the calculated theoretical masses of peptides confidently identified by LC-MS/MS. A piecewise linear function is then fitted to these matched peptides using a genetic algorithm with a fitness function that is insensitive to incorrect matches but sufficiently flexible to adapt to the discrete shifts common when comparing LC datasets. We demonstrate the utility of this method by aligning ion trap LC-MS/MS data with accurate LC-MS data from an FTICR mass spectrometer and show how hybrid datasets can improve peptide and protein identification by combining the speed of the ion trap with the mass accuracy of the FTICR, similar to using a hybrid ion trap-FTICR instrument. We also show that the high resolving power of FTICR can improve precision and linear dynamic range in quantitative proteomics. The alignment software, msalign, is freely available as open source.
Resumo:
The Bahrain International Circuit (BIC) and complex, at latitude 26.00N and longitude 51.54E, was built in 483 days and cost 150 million US$. The circuit consists of six different individual tracks with a 3.66 km outer track (involving 10 turns) and a 2.55 km inner track (having six turns). The complex has been designed to host a variety of other sporting activities. Fifty thousand spectators, including 10,500 in the main grandstand, can be accommodated simultaneously. State-of-the art on-site media and broadcast facilities are available. The noise level emitted from vehicles on the circuit during the Formula-1 event, on April 4th 2004, was acceptable and caused no physical disturbance to the fans in the VIP lounges or to scholars studying at the University of Bahrain's Shakeir Campus, which is only 1.5 km away from the circuit. The sound-intensity level (SIL) recorded on the balcony of the VIP lounge was 128 dB(A) and was 80 dB(A) inside the lounge. The calculated SIL immediately outside the lecture halls of the University of Bahrain was 70 dB(A) and 65 dB(A) within them. Thus racing at BIC can proceed without significantly disturbing the academic-learning process. The purchased electricity demand by the BIC complex peaked (at 4.5 MW) during the first Formula-1 event on April 4th 2004. The reverse-osmosis (RO) plant at the BIC provides 1000 m(3) of desalinated water per day for landscape irrigation. Renewable-energy inputs, (i.e., via solar and wind power), at the BIC could be harnessed to generate electricity for water desalination, air conditioning, lighting as well as for irrigation. If the covering of the BIC complex was covered by adhesively fixed modern photovoltaic cells, then similar to 1.2 MW of solar electricity could be generated. If two horizontal-axis, at 150 m height above the ground, three 75m bladed, wind turbines were to be installed at the BIC, then the output could reach 4 MW. Furthermore, if 10,000 Jojoba trees (a species renowned for having a low demand for water, needing only five irrigations per year in Bahrain and which remain green throughout the year) are planted near the circuit, then the local micro-climate would be improved with respect to human comfort as well as the local environment becoming cleaner.
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.