1000 resultados para infestação natural
Resumo:
A traça-do-tomateiro é uma praga importante do tomate e inseticidas são freqüentemente empregados para o seu controle. Porém, devido ao impacto ambiental e a possibilidade de resistência aos produtos utilizados para o controle do inseto, o controle biológico com o uso de Trichogramma pode ser uma alternativa para eliminar os dois problemas. Neste trabalho foi avaliada em bioensaios de laboratório a eficiência da dose recomendada de inseticidas do grupo químico dos organofosforados, piretróides e benzoiluréia para o controle da traça-do-tomateiro. Foi também avaliada a ocorrência natural de Trichogramma sp. em áreas pulverizadas ou não pulverizadas com inseticidas. A ocorrência do parasitismo natural foi determinada por meio da coleta de folhas em campo contendo ovos de traça-do-tomateiro, a fim de determinar, em avaliações de laboratório, a percentagem de ovos parasitados. Os resultados mostraram que todos os inseticidas testados causaram uma mortalidade de larvas menor que 70%, o que sugere uma eficiência reduzida dos produtos. O parasitóide Trichogramma sp. ocorreu naturalmente em todas as áreas, mas a percentagem de parasitismo foi menor nas áreas pulverizadas. Outros estudos devem ser realizados a fim de avaliar o potencial dos parasitóides locais, provavelmente mais bem adaptados as condições locais, para o controle da traça-do-tomateiro. Se esses organismos forem efetivos, o uso de inseticidas em lavouras de tomate pode ser reduzido.
Resumo:
Divulga o mapeamento e identificação das alterações provocadas por atividades antrópicas, relacionando os ecossistemas mais visados com as diferentes atividades implantadas, em duas áreas da Região Amazônica.
Resumo:
A utilização do Campo Sulino natural na pecuária de forma cada vez mais intensa e constante tem provocado a diminuição da sua condição produtiva. A excessiva remoção da parte aérea afeta o desenvolvimento das raízes. Um sistema radicular bem desenvolvido permite às plantas forrageiras explorar maior volume de solo, melhorando a absorção de água e nutrientes. As raízes também funcionam como órgão de reserva, assegurando rápida rebrota e produtividade das plantas forrageiras. O diferimento é uma prática de manejo de pastagens que pode ajudar a recuperar o campo por meio de descanso programado durante um tempo determinado. Este trabalho avaliou o efeito do tratamento de diferimento sobre o sistema radicular de campo natural após três anos de aplicação (agosto de 2000 a julho de 2003) na Embrapa Pecuária Sul (Bagé, RS). As avaliações foram realizadas no campo com presença animal durante todo o ano e sob diferimento de verão/outono (sem animais na área de março a junho). Foram coletadas 18 amostras de solo em cada tratamento, nas profundidades de 0?10 cm e 10?20 cm. As raízes e os rizomas foram separados do solo e entre si, secos e pesados. Houve diferença (p<0,05) para a porcentagem de raízes e a massa da matéria seca de rizomas. A testemunha apresentou 83,98% das raízes na camada de 0?10 cm e o diferimento, 77,5%. Na camada de 10?20 cm, sob diferimento houve aumento de 35% de raízes em relação à testemunha. A maior massa de matéria seca de rizomas foi obtida em pastagem sob diferimento, com 106% a mais em comparação à testemunha. Os resultados indicam vantagem do descanso da pastagem dos Campos Sulinos, tanto no acúmulo de reservas (maior quantidade de rizomas) voltado à propagação de gramíneas rizomatosas de interesse, quanto também no desenvolvimento de raízes na camada de 10?20 cm.
Resumo:
We have argued elsewhere that first order inference can be made more efficient by using non-standard syntax for first order logic. In this paper we show how a fragment of English syntax under Montague semantics provides the foundation of a new inference procedure. This procedure seems more effective than corresponding procedures based on either classical syntax of our previously proposed taxonomic syntax. This observation may provide a functional explanation for some of the syntactic structure of English.
Resumo:
The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).
Resumo:
2010
Resumo:
In Phys. Rev. Letters (73:2), Mantegna et al. conclude on the basis of Zipf rank frequency data that noncoding DNA sequence regions are more like natural languages than coding regions. We argue on the contrary that an empirical fit to Zipf"s "law" cannot be used as a criterion for similarity to natural languages. Although DNA is a presumably "organized system of signs" in Mandelbrot"s (1961) sense, and observation of statistical featurs of the sort presented in the Mantegna et al. paper does not shed light on the similarity between DNA's "gramar" and natural language grammars, just as the observation of exact Zipf-like behavior cannot distinguish between the underlying processes of tossing an M-sided die or a finite-state branching process.
Resumo:
Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.
Resumo:
2009
Resumo:
2002
Resumo:
2003
Resumo:
2005
Resumo:
This work describes a program, called TOPLE, which uses a procedural model of the world to understand simple declarative sentences. It accepts sentences in a modified predicate calculus symbolism, and uses plausible reasoning to visualize scenes, resolve ambiguous pronoun and noun phrase references, explain events, and make conditional predications. Because it does plausible deduction, with tentative conclusions, it must contain a formalism for describing its reasons for its conclusions and what the alternatives are. When an inconsistency is detected in its world model, it uses its recorded information to resolve it, one way or another. It uses simulation techniques to make deductions about creatures motivation and behavior, assuming they are goal-directed beings like itself.
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
2008