980 resultados para in vitro incubation
Resumo:
The Advanced JAX (TM) Bone Void Filler System (AJBVFS) is a novel bone graft material manufactured by Smith and Nephew Orthopaedics Ltd. and comprises beta tri-calcium phosphate granules with carboxymethylcellulose (CMC) gel as a handling agent. This study investigated the potential, in vitro, of the AJBVFS to function as a delivery system for cell therapy to enhance healing of bone defects. The attachment of rabbit bone marrow stromal cells (rbBMSCs), human BMSCs (hBMSCs) and human bone-derived cells (hBDCs) to JAX (TM) granules and the effect of CMC gel on cell proliferation and differentiation were investigated. There were slight species differences in the number and morphology of cells attached on the JAX (TM) granules with less rbBMSC attachment than human. All cells tolerated the presence of CMC gel and a reduction in cell number was only seen after longer exposure to higher gel concentrations. Low concentrations of CMC gel enhanced proliferation, alkaline phosphatase (ALP) expression and ALP activity in human cells but had no effect on rbBMSC. This study suggests that AJBVFS is an appropriate scaffold for the delivery of osteogenic cells and the addition of CMC gel as a handling agent promotes osteogenic proliferation and differentiation and is therefore likely to encourage bone healing.
Resumo:
Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.
Resumo:
Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.