964 resultados para highly selective vagotomy
Resumo:
Feeding experiments were conducted for 21 days to study the effect of live food (Tubifex sp.) and three prepared supplemental feeds on the growth and survival of 13 day old magur (C. batrachus) fry. It was observed that the growth of fry varied significantly (p<0.05) with different diets. The best growth was shown by the fry fed with Tubifex sp. followed by those fed with the diet containing yeast (30%), milk powder (30%) and chicken eggs (30%). The poorest growth rate was given by the fry fed on yeast (45%) and fish meal (45%). There was no significant difference in survival rates and condition factors among the fry fed with live food and prepared feeds.
Resumo:
Rapid and effective thermal processing methods using electron beams are described in this paper. Heating times ranging from a fraction of a second to several seconds and temperatures up to 1400°C are attainable. Applications such as the annealing of ion implanted material, both without significant dopant diffusion and with highly controlled diffusion of impurities, are described. The technique has been used successfully to activate source/drain regions for fine geometry NMOS transistors. It is shown that electron beams can produce localised heating of semiconductor substrates and a resolution of approximately 1 μm has been achieved. Electron beam heating has been applied to improving the crystalline quality of silicon-on sapphire used in CMOS device fabrication. Silicon layers with defect levels approaching bulk material have been obtained. Finally, the combination of isothermal and selective annealing is shown to have application in recrystallisation of polysilicon films on an insulating layer. The approach provides the opportunity of producing a silicon-on-insulator substrate with improved crystalline quality compared to silicon-on-sapphire at a potentially lower cost. It is suggested that rapid heating methods are expected to provide a real alternative to conventional furnace processing of semiconductor devices in the development of fabrication technology. © 1984 Benn electronics Publications Ltd, Luton.
Resumo:
This work demonstrates transmission at 2.5 Gbit/s across two wavelength-division multiplexing (WDM) network nodes, constructed using counter-propagating semiconductor optical amplifier (SOA) wavelength converters and an integrated wavelength-selective router separated by 45 km of fiber, with an overall penalty of 0.6 dB. Minimal degradation of the eye diagram is evident across the whole system. Full utilization of the capacity of the router would allow an aggregate 360-Gbit/s node capacity for a WDM channel of 2.5 Gb/s.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.
Resumo:
A detailed experimental investigation was conducted into the interaction of a converted wake and a separation bubble on the rear suction surface of a highly loaded low-pressure (LP) turbine blade. Boundary layer measurements, made with 2D LDA, revealed a new transition mechanism resulting from this interaction. Prior to the arrival of the wake, the boundary layer profiles in the separation region are inflexional. The perturbation of the separated shear layer caused by the converting wake causes an inviscid Kelvin-Helmholtz rollup of the shear layer. This results in the breakdown of the laminar shear layer and a rapid wake-induced transition in the separated shear layer.
The effects of a trip wire and unsteadiness on a high speed highly loaded low-pressure turbine blade
Resumo:
This paper presents the effect of a single spanwise 2D wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin-Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger [1]) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.
Resumo:
This paper presents the analysis and design of a new low power and highly linear mixer topology based on a newly reported differential derivative superposition method. Volterra series and harmonic balance are employed to investigate its linearisation mechanism and to optimise the design. A prototype mixer has been designed and is being implemented in 0.18μm CMOS technology. Simulation shows this mixer achieves 19.7dBm IIP3 with 10.5dB conversion gain, 13.2dB noise figure at 2.4GHz and only 3.8mW power consumption. This performance is competitive with already reported mixers.
Resumo:
Calcium and phosphorous contents of abdomen and cheliped muscles of juvenile, male
and female Macrobrchium nobilii were determined from field collected samples. In all
the three groups calcium concentration was higher in chelipeds while the phosphorous
content was more in abdomen muscles than in the chelipeds. However between three
groups the calcium content varied significantly both in the abdomen and cheliped
muscles (P
Resumo:
The east and west coast populations of wild Penaeus monodon in India were genetically characterized by RAPD analysis using six highly polymorphic primers reported earlier. The average genetic similarities within populations, based on profiles generated by all the six primers, were 0.828 and 0.851 for the east and west coast populations, respectively, values with individual primers ranging from 0.744 to 0.889. The average genetic similarity between populations across all the primers was 0.774. The number of bands found to be polymorphic were 38 (51.35%) and 37 (50.68%) in the east and west coast populations, respectively. Primer 5 yielded the highest level of polymorphism (63.63%) in the east coast population whereas primer 3 yielded the lowest level of polymorphism (36.36%) in the west coast population. The study reveals the existence of genetic variation in P. monodon stocks providing scope for genetic improvement through selective breeding. It also provides baseline data for future work on population structure analysis of P. monodon.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. © 2011 Elsevier B.V.
Resumo:
A highly active anticomplement factor (cobra venom factor) from the venom of Naja kaouthia in South Yunnan, China was isolated by sequential column chromatography (SP-Sephadex-C25, Q Sepharose HP and Sephadex G-150). It displays strong anticomplement acti