973 resultados para harmonic approximation
Resumo:
Islanding Detection in Microgrids Using Harmonic Signatures
Resumo:
The effect of cup anemometer shape parameters, such as the cups’ shape, their size, and their center rotation radius, was experimentally analyzed.This analysis was based on both the calibration constants of the transfer function and the most important harmonic termof the rotor’smovement,which due to the cup anemometer design is the third one.This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer’s rotor and the mentioned third harmonic term of its movement.
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Resumo:
In recent years, there has been a growing interest in incorporating microgrids in electrical power networks. This is due to various advantages they present, particularly the possibility of working in either autonomous mode or grid connected, which makes them highly versatile structures for incorporating intermittent generation and energy storage. However, they pose safety issues in being able to support a local island in case of utility disconnection. Thus, in the event of an unintentional island situation, they should be able to detect the loss of mains and disconnect for self-protection and safety reasons. Most of the anti-islanding schemes are implemented within control of single generation devices, such as dc-ac inverters used with solar electric systems being incompatible with the concept of microgrids due to the variety and multiplicity of sources within the microgrid. In this paper, a passive islanding detection method based on the change of the 5th harmonic voltage magnitude at the point of common coupling between grid-connected and islanded modes of operation is presented. Hardware test results from the application of this approach to a laboratory scale microgrid are shown. The experimental results demonstrate the validity of the proposed method, in meeting the requirements of IEEE 1547 standards.
Resumo:
The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed
Resumo:
Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of this kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the trade-off between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions, we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.
Resumo:
The measurement deviations of cup anemometers are studied by analyzing the rotational speed of the rotor at steady state (constant wind speed). The differences of the measured rotational speed with respect to the averaged one based on complete turns of the rotor are produced by the harmonic terms of the rotational speed. Cup anemometer sampling periods include a certain number of complete turns of the rotor, plus one incomplete turn, the residuals from the harmonic terms integration within that incomplete turn (as part of the averaging process) being responsible for the mentioned deviations. The errors on the rotational speed due to the harmonic terms are studied analytically and then experimentally, with data from more than 500 calibrations performed on commercial anemometers.
Resumo:
The segmental approach has been considered to analyze dark and light I-V curves. The photovoltaic (PV) dependence of the open-circuit voltage (Voc), the maximum power point voltage (Vm), the efficiency (?) on the photogenerated current (Jg), or on the sunlight concentration ratio (X), are analyzed, as well as other photovoltaic characteristics of multijunction solar cells. The characteristics being analyzed are split into monoexponential (linear in the semilogarithmic scale) portions, each of which is characterized by a definite value of the ideality factor A and preexponential current J0. The monoexponentiality ensures advantages, since at many steps of the analysis, one can use the analytical dependences instead of numerical methods. In this work, an experimental procedure for obtaining the necessary parameters has been proposed, and an analysis of GaInP/GaInAs/Ge triple-junction solar cell characteristics has been carried out. It has been shown that up to the sunlight concentration ratios, at which the efficiency maximum is achieved, the results of calculation of dark and light I-V curves by the segmental method fit well with the experimental data. An important consequence of this work is the feasibility of acquiring the resistanceless dark and light I-V curves, which can be used for obtaining the I-V curves characterizing the losses in the transport part of a solar cell.
Resumo:
We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.
Resumo:
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.
Resumo:
Peer reviewed
Resumo:
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science.
Resumo:
We investigated how human subjects adapt to forces perturbing the motion of their ams. We found that this kind of learning is based on the capacity of the central nervous system (CNS) to predict and therefore to cancel externally applied perturbing forces. Our experimental results indicate: (i) that the ability of the CNS to compensate for the perturbing forces is restricted to those spatial locations where the perturbations have been experienced by the moving arm. The subjects also are able to compensate for forces experienced at neighboring workspace locations. However, adaptation decays smoothly and quickly with distance from the locations where disturbances had been sensed by the moving limb. (ii) Our experiments also how that the CNS builds an internal model of the external perturbing forces in intrinsic (muscles and / or joints) coordinates.
Resumo:
To characterize the functionally important anharmonic motions of proteins, simulations of carboxymyoglobin (MbCO) dynamics have been performed during which dihedral transitions were prohibited. Comparison of torsionally restrained and unrestrained protein dynamics simulated at three levels of hydration and at temperatures ranging from 100 to 400 K suggests that hydration "catalyzes" protein mobility by facilitating collective anharmonic motions that do not require dihedral transitions. When dihedral transitions were prohibited, dehydrated MbCO, to a good approximation, exhibited only harmonic fluctuations, whereas hydrated MbCO exhibited both harmonic and anharmonic motions. The fluctuation of helix centers of mass also remained highly anharmonic in the torsionally restrained hydrated system. Atomic mean-square fluctuation at 300 K was reduced upon prohibition of dihedral transitions by only 28% and 10% for MbCO hydrated by 350 and 3830 water molecules, respectively.