957 resultados para grazing rotation
Resumo:
Unilateral intrahippocampal injections of tetrodotoxin were used to temporarily inactivate one hippocampus during specific phases of training in an active allothetic place avoidance task. The rat was required to use landmarks in the room to avoid a room-defined sector of a slowly rotating circular arena. The continuous rotation dissociated room cues from arena cues and moved the arena surface through a part of the room in which foot-shock was delivered. The rat had to move away from the shock zone to prevent being transported there by the rotation. Unilateral hippocampal inactivations profoundly impaired acquisition and retrieval of the allothetic place avoidance. Posttraining unilateral hippocampal inactivation also impaired performance in subsequent sessions. This allothetic place avoidance task seems more sensitive to hippocampal disruption than the standard water maze task because the same unilateral hippocampal inactivation does not impair performance of the variable-start, fixed hidden goal task after procedural training. The results suggest that the hippocampus not only encodes allothetic relationships amongst landmarks, it also organizes perceived allothetic stimuli into systems of mutually stable coordinates. The latter function apparently requires greater hippocampal integrity.
Resumo:
Subunit rotation within the F1 catalytic sector of the ATP synthase has been well documented, identifying the synthase as the smallest known rotary motor. In the membrane-embedded FO sector, it is thought that proton transport occurs at a rotor/stator interface between the oligomeric ring of c subunits (rotor) and the single-copy a subunit (stator). Here we report evidence for an energy-dependent rotation at this interface. FOF1 was expressed with a pair of substituted cysteines positioned to allow an intersubunit disulfide crosslink between subunit a and a c subunit [aN214C/cM65C; Jiang, W. & Fillingame, R. H. (1998) Proc. Natl. Acad. Sci. USA 95, 6607–6612]. Membranes were treated with N,N′-dicyclohexyl-[14C]carbodiimide to radiolabel the D61 residue on less than 20% of the c subunits. After oxidation to form an a–c crosslink, the c subunit properly aligned to crosslink to subunit a was found to contain very little 14C label relative to other members of the c ring. However, exposure to MgATP before oxidation significantly increased the radiolabel in the a–c crosslink, indicating that a different c subunit was now aligned with subunit a. This increase was not induced by exposure to MgADP/Pi. Furthermore, preincubation with MgADP and azide to inhibit F1 or with high concentrations of N,N′-dicyclohexylcarbodiimide to label most c subunits prevented the ATP effect. These results provide evidence for an energy-dependent rotation of the c ring relative to subunit a.
Resumo:
During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.
Resumo:
Aims. We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods. The fundamental stellar parameters (vsini, spectral type, T_eff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results. We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100–200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d^-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle.
Resumo:
Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims. We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca II H & K lines, to others that hold noteworthy advantages. Methods. We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF ECHELLE package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R’_HK index. Results. We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.
Resumo:
Grazed pastures are the backbone of the Brazilian livestock industry and grasses of the genus Brachiaria (syn. Urochloa) are some of most used tropical forages in the country. Although the dependence on the forage resource is high, grazing management is often empirical and based on broad and non-specific guidelines. Mulato II brachiariagrass (Convert HD 364, Dow AgroSciences, São Paulo, Brazil) (B. brizantha × B. ruziziensis × B. decumbens), a new Brachiaria hybrid, was released as an option for a broad range of environmental conditions. There is no scientific information on specific management practices for Mulato II under continuous stocking in Brazil. The objectives of this research were to describe and explain variations in carbon assimilation, herbage accumulation (HA), plant-part accumulation, nutritive value, and grazing efficiency (GE) of Mulato II brachiariagrass as affected by canopy height and growth rate, the latter imposed by N fertilization rate, under continuous stocking. An experiment was carried out in Piracicaba, SP, Brazil, during two summer grazing seasons. The experimental design was a randomized complete block, with a 3 x 2 factorial arrangement, corresponding to three steady-state canopy heights (10, 25 and 40 cm) maintained by mimicked continuous stocking and two growth rates (imposed as 50 and 250 kg N ha-1 yr-1), with three replications. There were no height × N rate interactions for most of the responses studied. The HA of Mulato II increased linearly (8640 to 13400 kg DM ha-1 yr-1), the in vitro digestible organic matter (IVDOM) decreased linearly (652 to 586 g kg-1), and the GE decreased (65 to 44%) as canopy height increased. Thus, although GE and IVDOM were greatest at 10 cm height, HA was 36% less for the 10- than for the 40-cm height. The leaf carbon assimilation was greater for the shortest canopy (10 cm), but canopy assimilation was less than in taller canopies, likely a result of less leaf area index (LAI). The reductions in HA, plant-part accumulation, and LAI, were not associated with other signs of stand deterioration. Leaf was the main plant-part accumulated, at a rate that increased from 70 to 100 kg DM ha-1 d-1 as canopy height increased from 10 to 40 cm. Mulato II was less productive (7940 vs. 13380 kg ha-1 yr-1) and had lesser IVDOM (581 vs. 652 g kg-1) at the lower N rate. The increase in N rate affected plant growth, increasing carbon assimilation, LAI, rates of plant-part accumulation (leaf, stem, and dead), and HA. The results indicate that the increase in the rate of dead material accumulation due to more N applied is a result of overall increase in the accumulation rates of all plant-parts. Taller canopies (25 or 40 cm) are advantageous for herbage accumulation of Mulato II, but nutritive value and GE was greater for 25 cm, suggesting that maintaining ∼25-cm canopy height is optimal for continuously stocked Mulato II.
Resumo:
The combined effects of drought stress and grazing pressure on shaping plant–plant interactions are still poorly understood, while this combination is common in arid ecosystems. In this study we assessed the relative effect of grazing pressure and slope aspect (drought stress) on vegetation cover and soil functioning in semi-arid Mediterranean grassland–shrublands in southeastern Spain. Moreover, we linked these two stress factors to plant co-occurrence patterns at species-pair and community levels, by performing C-score analyses. Vegetation cover and soil functioning decreased with higher grazing pressure and more south-facing (drier) slopes. At the community level, plants at south-facing slopes were negatively associated at no grazing but positively associated at low grazing pressure and randomly associated at high grazing pressure. At north-facing slopes, grazing did not result in a shift in the direction of the association. In contrast, analysis of pairwise species co-occurrence patterns showed that the dominant species Stipa tenacissima and Anthyllis cytisoides shifted from excluding each other to co-occurring with increasing grazing pressure at north-facing slopes. Our findings highlight that for improved understanding of plant interactions along stress gradients, interactions between species pairs and interactions at the community level should be assessed, as these may reveal contrasting results.
Resumo:
Spin-projected spin polarized Møller–Plesset and spin polarized coupled clusters calculations have been made to estimate the cyclobutadiene automerization, the ethylene torsion barriers in their ground state, and the gap between the singlet and triplet states of ethylene. The results have been obtained optimizing the geometries at MP4 and/or CCSD levels, by an extensive Gaussian basis set. A comparative analysis with more complex calculations, up to MP5 and CCSDTQP, together with others from the literature, have also been made, showing the efficacy of using spin-polarized wave functions as a reference wave function for Møller–Plesset and coupled clusters calculations, in such problems.
Resumo:
The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.
Resumo:
Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student’s t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22–0.26 km s-1, dependent on instrumental configuration.
Resumo:
A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.
Resumo:
Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.